
Final Exam Solutions
Topology II

May 10, 2006

1. (20 points) Below is a covering space p: X̃ → X of the figure eight space X = S1 ∨ S1. Let
G = π1(X,x0) = 〈a, b〉 and H1 = p∗(π1(X̃, x1)).
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(a) Find a free generating set for H1. What is its rank? What is its index in G?

(b) Let H2 = p∗(π1(X̃, x2)). Find a generating set for H2, using the same tree as for H1. What is
the relationship between H1 and H2? Be as specific as you can.

(c) Find a subgroup H3 of G having the same index as H1, such that H1 and H3 are not conjugate
in G. [Hint: find a covering space of X with the right properties.]

(a) Let T ⊂ X̃ be the maximal tree consisting of the path from x1 to x2 labeled by the word
b2. Then H1 has free generators a, b3, b2ab−1, and bab−2. It has rank 4 and since the covering has
three sheets, [G : H1] = 3.

(b) The free generators for H2 (using T again) are b−2ab2, b3, ab, and b−1a. The subgroups are
conjugate since the based coverings differ by a change of basepoint only. The path in T from x1

to x2 gives the conjugating element, in this case b2. Indeed, by comparing generating sets, we see
that H2 = b−2H1b

2.
(c) Two subgroups are conjugate if and only if they are the image subgroups of two isomorphic

covering spaces. Thus we need a covering space with 3 sheets that is not isomorphic to p: X̃ →
X (for any choice of basepoint). For example, the following cover will do, since it is not even
homeomorphic to X̃. Here H3 = 〈bab−1, b2, a2, a−1ba〉 (using the middle vertex as basepoint, and
the top middle two edges as the maximal tree).
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2. (10 points) Let X be a space which possesses a universal cover. Let p1: X1 → X and p2: X2 → X1

be covering maps. Prove that p1 ◦ p2: X2 → X is a covering map. [Assume X is locally path
connected.]

We shall use the following simple fact: if f : A → B and g: B → C are continuous maps such
that g ◦ f is a homeomorphism and f is surjective, then f and g are homeomorphisms. To prove
this, let h = g ◦ f and note that since h is bijective, f must be injective and g surjective. Thus
f is bijective, and hence so is g (since g = h ◦ f−1). Now f−1 = h−1 ◦ g and g−1 = f ◦ h−1 are
continuous, being compositions of continuous maps.

Returning to the problem, p1 ◦ p2 is continuous and surjective, so we only need to show that
X has an evenly covered neighborhood at every point. Given x ∈ X let U be a path connected
neighborhood of x that is evenly covered by the universal cover p: X̃ → X. Let {Uα} be the slices
of p−1(U), so that p|Uα

is a homeomorphism for each α.
By the lifting criterion (applied to p1) the map p: X̃ → X lifts to p̃: X̃ → X1, and by applying

the lifting criterion again to the cover p2, we get a lift p0: X̃ → X2. That is, p0: X̃ → X2 has the
property that p = p1 ◦ p2 ◦ p0.

For each α let Vα ⊂ X2 be the set p0(Uα). The fact proved above shows that (p1 ◦ p2)|Vα
is a

homeomorphism of Vα onto U . It remains to prove that the sets {Vα} partition (p1 ◦ p2)
−1(U).

Note that p1: X1 → X and p2: X2 → X1 have the unique lifting property for maps of connected
spaces, and it follows directly that p2 ◦ p1 has this property as well. Now consider the inclusion
map U → X and the maps (p2 ◦ p1)|Vα

−1: U → Vα →֒ X2, which are lifts of this inclusion. Two
such maps either are equal or differ at every point. Therefore, Vα and Vβ are equal or are disjoint,
for every α and β.

3. (15 points) Let p: R → S1 be the standard covering map t 7→ (cos(2πt), sin(2πt)) = e2πit. Let
b = p(0) ∈ S1 be the basepoint.

(a) Define the lifting correspondence φ: π1(S
1, b) → Z and show that it is well defined.

(b) Show that φ is injective.

(a) Note first that Z = p−1(b). We define φ([f ]) = f̃(1) where f̃ is the unique lift of f : I → S1

with f̃(0) = 0. If [f ] = [g] then there is a path homotopy between f and g, and this homotopy lifts
to a path homotopy between g̃ and f̃ . Hence f̃(1) = g̃(1).

(b) If φ([f ]) = φ([g]) then f̃ and g̃ are paths in R with the same endpoints. Then there is a
path homotopy H: I × I → R between f̃ and g̃ (the straight line homotopy, for example). The map
p ◦ H is a path homotopy between f and g and so [f ] = [g].

4. (15 points) Let A ⊂ R
3 be a compact subspace and let f : A → A be a continuous map. Show

that there is a continuous map g: R
3 → R

3 such that g|A = f . State carefully any major theorems
that you use.

Let i: A → R
3 be inclusion and πi: R

3 → R the projection onto the ith coordinate. Let
fi = πi ◦ f . Thus i ◦ f : A → R

3 is given by (f1, f2, f3).
Since R

3 is normal and A is closed, the Tietze extension theorem says that there are maps
gi: R

3 → R such that gi|A = fi. Now g = (g1, g2, g3) is a map R
3 → R

3 which restricts to f on A.
Tietze extension theorem: If X is normal and A ⊂ X is closed, then every continuous map

f : A → R extends to a continuous map g: X → R (that is, g|A = f). The same statement also
holds with R replaced by any closed interval.



5. (15 points) Let S3 ⊂ R
3 be the unit sphere. Let X = S3/ ∼ where x ∼ −x for all x ∈ S3. Note

that X is usually called RP 3, or real 3-dimensional projective space.

(a) Prove that S3 is simply connected.
(b) Explain why S3 is a covering space of X. How many sheets does it have? What is the
fundamental group of X?

(a) We have seen two proofs of this. Here is one: let N,S be two points in S3 and let U = S3−N ,
V = S3 − S. By stereographic projection, U and V are homeomorphic to R

3 and are simply
connected. Also U ∩V is path connected. Hence, by van Kampen’s theorem, π1(S

3) is trivial. Also
S3 is path connected, and so it is simply connected.

(b) Let q: S3 → X be the quotient map. Given x ∈ S3 let U be a neighborhood of x that is
disjoint from −U . Then U ∪−U is a saturated open set, so q(U) is open in X. The restriction q|U
is injective, and therefore is a homeomorphism of U onto q(U). The same is true of −U , so q(U)
is evenly covered by q. Also, q is clearly continuous and surjective.

The number of sheets of the map S3 → X is two, since each point has two preimage points.
Since S3 and X are connected, the image subgroup of S3 has index two in the fundamental group
of X. Hence the fundamental group of X has two elements, and is isomorphic to Z/2Z.

6. (15 points) A covering space p: X̃ → X is shown below. The spaces are 2-dimensional manifolds
(surfaces). Note that each embedded circle Ci maps homeomorphically onto the circle C, and each
component of X̃ −

⋃
i Ci maps by a homeomorphism to X −C. (If you cut X̃ along the curves Ci,

take one of the pieces, and glue its boundary components together, you get a copy of X.)

[The picture is from page 73 of Hatcher.]

(a) Draw a loop γ on X which represents a non-trivial element of π1(X,x0), and which is not in
the image subgroup p∗(π1(X̃, x̃0)). Using lifts to X̃ , explain why γ has this property.

(b) Describe informally the covering translations (or automorphisms) of p: X̃ → X. How many
are there?

(a) Draw a loop on the surface that crosses C in a single point. Then any lift will be a path
from Ci to Ci+1 for some i. Since this lift is not a loop, the original curve does not represent an
element of p∗(π1(X̃, x̃0)).

(b) If x ∈ X is any point, let p−1(x) = {x0, x1, x2, x3, x4}. Every covering translation takes x0

to some xi. Furthermore, if two covering translations agree at a point, they are equal. Hence there
are at most five covering translations (including the identity).

There are in fact five covering translations, given by rotations by multiples of 2π/5 in the
picture.


