Final Exam Topology II May 10, 2006

1. (20 points) Below is a covering space $p: \widetilde{X} \to X$ of the figure eight space $X = S^1 \vee S^1$. Let $G = \pi_1(X, x_0) = \langle a, b \rangle$ and $H_1 = p_*(\pi_1(\widetilde{X}, x_1))$.

(a) Find a free generating set for H_1 . What is its rank? What is its index in G?

(b) Let $H_2 = p_*(\pi_1(\widetilde{X}, x_2))$. Find a generating set for H_2 , using the same tree as for H_1 . What is the relationship between H_1 and H_2 ? Be as specific as you can.

(c) Find a subgroup H_3 of G having the same index as H_1 , such that H_1 and H_3 are not conjugate in G. [Hint: find a covering space of X with the right properties.]

2. (10 points) Let X be a space which possesses a universal cover. Let $p_1: X_1 \to X$ and $p_2: X_2 \to X_1$ be covering maps. Prove that $p_1 \circ p_2: X_2 \to X$ is a covering map. [Assume X is locally path connected.]

3. (15 points) Let $p: \mathbb{R} \to S^1$ be the standard covering map $t \mapsto (\cos(2\pi t), \sin(2\pi t)) = e^{2\pi i t}$. Let $b = p(0) \in S^1$ be the basepoint.

(a) Define the *lifting correspondence* $\phi: \pi_1(S^1, b) \to \mathbb{Z}$ and show that it is well defined.

(b) Show that ϕ is injective.

4. (15 points) Let $A \subset \mathbb{R}^3$ be a compact subspace and let $f: A \to A$ be a continuous map. Show that there is a continuous map $g: \mathbb{R}^3 \to \mathbb{R}^3$ such that $g|_A = f$. State carefully any major theorems that you use.

5. (15 points) Let $S^3 \subset \mathbb{R}^3$ be the unit sphere. Let $X = S^3 / \sim$ where $x \sim -x$ for all $x \in S^3$. Note that X is usually called $\mathbb{R}P^3$, or real 3-dimensional projective space.

(a) Prove that S^3 is simply connected.

(b) Explain why S^3 is a covering space of X. How many sheets does it have? What is the fundamental group of X?

6. (15 points) A covering space $p: \widetilde{X} \to X$ is shown below. The spaces are 2-dimensional manifolds (surfaces). Note that each embedded circle C_i maps homeomorphically onto the circle C, and each component of $\widetilde{X} - \bigcup_i C_i$ maps by a homeomorphism to X - C. (If you cut \widetilde{X} along the curves C_i , take one of the pieces, and glue its boundary components together, you get a copy of X.)

[The picture is from page 73 of Hatcher.]

(a) Draw a loop γ on X which represents a non-trivial element of $\pi_1(X, x_0)$, and which is not in the image subgroup $p_*(\pi_1(\widetilde{X}, \widetilde{x}_0))$. Using lifts to \widetilde{X} , explain why γ has this property.

(b) Describe informally the covering translations (or automorphisms) of $p: \widetilde{X} \to X$. How many are there?