
Exam III Solutions
Topology II

Due May 2, 2006

1. (a) Prove that if p : (X̃, x̃0) → (X,x0) is an n-sheeted covering space then p∗(π1(X̃, x̃0)) is a
subgroup of π1(X,x0) of index n.

(b) Find two 2-sheeted covering spaces of the torus S1 × S1 that are not isomorphic to each other
(as covering spaces). Can you find three?

(a) We must assume (as usual) that X̃ is connected. Let G = π1(X,x0) and H = p∗(π1(X̃, x̃0)).
Write p−1(x0) as {x̃0, . . . , x̃n−1}. For any [γ1], [γ2] ∈ G we claim that the cosets [γ1]H and [γ2]H
are equal if and only if the lifts γ̃1 and γ̃2 starting at x̃0 have the same endpoint x̃i. Also every x̃i

can be joined to x̃0 by a path γ̃ which represents some element [γ] = [p ◦ γ̃] ∈ G. Hence the left
cosets of H are in one-to-one correspondence with p−1(x0), and [G : H] = n.

To prove the claim, note that [γ1]H = [γ2]H if and only if [γ1]
−1[γ2]H = H, i.e. if and only if

[γ1γ2] ∈ H. This occurs (by a theorem given in class) if and only if γ1 ∗ γ2 lifts to a loop in X̃ .
Hence if γ̃1 and γ̃2 have the same endpoint, [γ1]H = [γ2]H. Conversely, if γ̃1(1) 6= γ̃2(1) then γ̃1 ∗ γ̃2

is a lift of γ1 ∗ γ2 that is not a loop, and so [γ1]H 6= [γ2]H.
(b) The first covering is p1 : S1 × S1 → S1 ×S1 given by (z,w) 7→ (z2, w) in complex notation.

The image subgroup in the fundamental group of S1 × S1 is 2Z× Z ⊂ Z×Z. The second covering
is p2 : S1 × S1 → S1 × S1 given by (z,w) 7→ (z,w2) with image subgroup Z × 2Z ⊂ Z × Z. These
subgroups are not conjugate (which is the same as being equal, in an abelian group), and so there
is no choice of basepoints making the coverings isomorphic.

There is a third covering space corresponding to the subgroup {(m,n) | m + n is even}. This
is the kernel of the homomorphism Z × Z → Z/2Z where each generator goes to the non-trivial
element of Z/2Z. There are no other 2-sheeted covers.

2. (a) Find all covering spaces of the circle up to covering space isomorphism.

(b) Find all homomorphisms between these covering spaces.

(c) If you ignore the covering maps to S1, what are the covering spaces of S1 up to homeomorphism?
That is, which spaces arise in part (a)?

(a) The subgroups of Z = π1(S
1, 1) are nZ for positive integers n, and the trivial group. The

universal cover is p : R → S1 given by t 7→ eit. There are also coverings pn : S1 → S1 given by
eit 7→ eint (that is, z 7→ zn). We have seen in homework that the image subgroup pn∗(π1(S

1, 1))
is nZ ⊂ Z. Note that the coverings pn and pm are not isomorphic for n 6= m since the subgroups
are not equal (or alternatively, they have different numbers of sheets). We have found all coverings
because they give all subgroups of Z.

(b) First, since the trivial subgroup is contained in every subgroup, there exist homomorphisms
from the universal cover to every cover. For the case pn : S1 → S1 the homomorphism f : R → S1

is t 7→ eit/n, since pn(f(t)) = (eit/n)n = eit. Next, there is a homomorphism from pn : S1 → S1

to pm : S1 → S1 if and only if nZ ⊂ mZ, i.e. if and only if m divides n. When this occurs, say
n = km, the homomorphism f : S1 → S1 is given by z 7→ zk, since pm(f(z)) = (zk)m = zn = pn(z).



(c) The covering spaces are S1 and R.

3. (a,b,c) Same as question 2, but for covering spaces of the Möbius band. The Möbius band is
the quotient of the square I × I by the equivalence relation that identifies the point (0, t) to the
point (1, 1 − t) for each t ∈ I.

Here is an alternate description of the Möbius band that may be useful. Let f : R×I → R×I be the
map (x, t) 7→ (x+1, 1−t). Then the Möbius band is the quotient of R×I by the equivalence relation
whose equivalence classes are the orbits of f . That is, (x, t) ∼ (x′, t′) if and only if (x′, t′) = fk(x, t)
for some k ∈ Z.

(a) Let M be the Möbius band. The “core circle” C ⊂ M (the image of I × 1
2 in the first

description, or of R × 1
2 in the second) is a deformation retract of M , so π1(M) ∼= Z. Therefore

there exist a universal cover and covers for each positive integer n.
The universal cover is R × I mapping by (x, t) 7→ [(x, t)]. One can check that every point

(x, t) ∈ R × I has a neighborhood U such that fk(U) is disjoint from U for every k 6= 0. Then,
by the definition of the equivalence relation, U maps homeomorphically onto its image in M , and
the preimage of this set is simply the disjoint union

⋃
k fk(U), with each component mapping by a

homeomorphism. That is, the image of U is evenly covered by the map, and hence this is a covering
space.

We know that there is a unique covering space with n sheets for every integer n. To construct
it we use the fact that the covering map above factors through it, and so it is a quotient space
which lies between R × I and M . We define Xn to be the quotient of R × I by the relation
(x, t) ∼ (x′, t′) if (x′, t′) = fkn(x, t) for some k ∈ Z. The covering map pn : Xn → M is the natural
map [(x, t)]n 7→ [(x, t)] (remember, these are two different equivalence relations, but the former is
finer than the latter, so the map is well defined). The verification that this is a covering map is
similar to the argument given above.

Here is an alternate description of Xn: it is the quotient of [0, n]× I by the equivalence relation
that identifies the point (0, t) to the point (n, gn(t)) for each t ∈ I, where g(t) = 1 − t. The map
pn takes the subspace [i, i + 1] × I ⊂ Xn to M by (x, t) 7→ (x − i, gi(t)). One can check that this
respects the edge-identifications and hence is well defined.

(b) As with problem 2, there is a homomorphism Xn → Xm if and only if m divides n, and
there is always a homomorphism R × I → Xn. This latter homomorphism is simply given by
(x, t) 7→ [(x, t)]n. For the others, if n = km then the map of equivalence classes [(x, t)]n 7→ [(x, t)]m
is well defined: if (x, t) ∼n (x′, t′) then (x′, t′) = f jn(x, t) for some j, hence (x′, t′) = f (jk)m(x, t),
so (x, t) ∼m (x′, t′). It is clear that this map is compatible with the covering maps to M .

(c) The covering spaces are homeomorphic to M (n odd), S1 × I (n even), and R × I. This is
seen from the second description of Xn, which is a strip with opposite sides identified, with coherent
or incoherent orientations, according to the parity of n.

4. Let X be the 3-fold dunce cap. That is, X is a 2-dimensional cell complex with one 0-cell, one
1-cell, and one 2-cell, whose attaching map S1 → X1 winds 3 times around (note that X1 is a
circle). Describe a simply connected covering space of X and its covering map to X. [Hint: it is a
cell complex having 3 i-cells for i = 0, 1, 2.]

For a picture of X, see page 52 of Hatcher. This shows a neighborhood of the 1-skeleton; just
attach a disk to the boundary circle to get X. The fundamental group of X is Z/3Z. Let p : X̃ → X



be the universal cover (which we are trying to construct). It is a 3-sheeted cover by problem 1,
since the trivial subgroup has index 3 in the fundamental group.

The picture from Hatcher gives a way of understanding X̃ . In the part shown, if you travel once
around the “equator” circle, the three “fins” will be permuted by a one-third rotation. In X̃, this
neighborhood of the 1-skeleton will unwind in a three-to-one fashion, and in this cover, the “fins”
will make three one-third rotations before joining up again; that is, up to homeomorphism, this
neighborhood is topologically a product (of the “tripod” with the circle). The disk that is missing
from the picture will be covered by three disks, attached to the three boundary circles.

So X̃ is a circle (made of three 0-cells and three 1-cells) with three 2-cells attached, each by a
homeomorphism S1 → X̃1.

The map to X is given as follows. Consider X̃ as three closed disks D1∪D2∪D3 with boundary
circles identified (by the identity map). Consider X as a single disk D with identifications made on
its boundary (i.e. z ∼ z · e2πi/3 for all z ∈ S1). For x ∈ D1 map x to x ∈ D. For x ∈ D2 map x to
r(x) ∈ D where r : D → D is rotation by 2π/3 (or r(x) = x · e2πi/3 if x is considered as a complex
number). For x ∈ D3 map x to r2(x) = x · e4πi/3. This is continuous as a map D1 ∪ D2 ∪D3 → X
and is constant on equivalence classes, hence gives a continuous map X̃ → X. The interior of D is
evenly covered since r : D → D is a homeomorphism. To check that points on the 1-skeleton have
evenly covered neighborhoods, one should carefully draw pictures of these neighborhoods and their
preimages in X̃ . Note that if there were no rotations, the “fins” of X̃ would get folded together,
and this folding would not be a local homeomorphism.


