Exam II

Topology II
March 23, 2006

1. For any point $x_{0} \in S^{1}$ prove that the subset $S^{1} \times\left\{x_{0}\right\}$ is a retract of $S^{1} \times S^{1}$, but is not a deformation retract of $S^{1} \times S^{1}$.
2. (a) Show that if $G * H$ is abelian then G or H is trivial.
(b) Let $A=\{1, a\}$ and $B=\{1, b\}$ be groups with two elements (so $a^{2}=1$ and $b^{2}=1$). Describe all the elements of $A * B$, and describe the inverse of any element. Also, find an element of infinite order.
3. Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be spaces with basepoints and let $X \times Y$ have basepoint $\left(x_{0}, y_{0}\right)$. Consider the standard projection maps $p_{1}: X \times Y \rightarrow X$ and $p_{2}: X \times Y \rightarrow Y$, and also the inclusion maps $i: X \rightarrow X \times Y$ and $j: Y \rightarrow X \times Y$ given by $i(x)=\left(x, y_{0}\right)$ and $j(y)=\left(x_{0}, y\right)$.

Define the homomorphism

$$
\Phi: \pi_{1}\left(X, x_{0}\right) \times \pi_{1}\left(Y, y_{0}\right) \rightarrow \pi_{1}\left(X \times Y,\left(x_{0}, y_{0}\right)\right)
$$

by $(\gamma, \delta) \mapsto i_{*}(\gamma) \cdot j_{*}(\delta)$, where \cdot denotes multiplication in $\pi_{1}\left(X \times Y,\left(x_{0}, y_{0}\right)\right)$. Also define

$$
\Psi: \pi_{1}\left(X \times Y,\left(x_{0}, y_{0}\right)\right) \rightarrow \pi_{1}\left(X, x_{0}\right) \times \pi_{1}\left(Y, y_{0}\right)
$$

by $\gamma \mapsto\left(p_{1 *}(\gamma), p_{2 *}(\gamma)\right)$.
Show that $\Psi \circ \Phi: \pi_{1}\left(X, x_{0}\right) \times \pi_{1}\left(Y, y_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right) \times \pi_{1}\left(Y, y_{0}\right)$ is the identity.
4. (a) Let $h, k: X \rightarrow Y$ be homotopic continuous maps with $h\left(x_{0}\right)=y_{0}$ and $k\left(x_{0}\right)=y_{1}$. What is the relationship between the induced homomorphisms $h_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$ and $k_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{1}\right)$? [Your answer should involve a commutative diagram.]
(b) Recall that a continuous map $f: X \rightarrow Y$ is a homotopy equivalence if there is a continuous map $g: Y \rightarrow X$ such that $f \circ g \simeq \operatorname{id}_{Y}$ and $g \circ f \simeq \mathrm{id}_{X}$.

For such maps f and g, let $f\left(x_{0}\right)=y_{0}, g\left(y_{0}\right)=x_{1}$, and $f\left(x_{1}\right)=y_{1}$. Show that $g_{*}: \pi_{1}\left(Y, y_{0}\right) \rightarrow$ $\pi_{1}\left(X, x_{1}\right)$ is surjective and injective.
5. (a) Suppose $X=U \cup V$ where U and V are open, $U \cap V$ is path connected, $x_{0} \in U \cap V$, and $i: U \rightarrow X$ and $j: V \rightarrow X$ are the inclusion maps. What can you say about $\pi_{1}\left(X, x_{0}\right)$?
(b) Let X be the space obtained by joining S^{2} and S^{1} at one point, and then joining another copy of S^{2} to a different point of S^{1}. For example, let X be the union of the unit circle in the $x y$-plane and the spheres of radius 1 centered at the points $(\pm 2,0,0)$.

Prove that the fundamental group of X is cyclic (i.e. it is generated by one element). Be sure to use care when applying the theorem from part (a).

