
Exam II solutions
Topology (Math 5853)

Choose four problems. If you do five, please say which four you want graded.

1(a) Show that every closed subspace of a compact space is compact.
(b) Show that every compact Hausdorff space is regular.

Solution.
(a) Let Y ⊂ X be a closed subspace. Let A be a covering of Y by open sets of X. Note that

X − Y is open, so A′ = A ∪ {X − Y } is an open covering of X. By compactness of X, there is a
finite subcovering {A1, . . . , An} ⊂ A′. Now, {A1, . . . , An} ∩ A is a finite subset of A which covers
Y (it equals {A1, . . . , An} if X − Y is not in this set, otherwise it is this collection with X − Y
removed). Hence Y is compact.

(b) Let X be a compact Hausdorff space. First, one-point sets in X are closed because X is
Hausdorff. Next, let x and B be given, where x ∈ X and B is a closed set not containing x. For
each b ∈ B there exist disjoint open sets Ub, Vb such that x ∈ Ub and b ∈ Vb. The sets {Vb} are an
open covering of B. By part (a) B is compact, so there is a finite subcovering {Vb1 , . . . , Vbn}. Now
let V = Vb1 ∪ · · · ∪ Vbn and U = Ub1 ∩ · · · ∩ Ubn . These sets are open and disjoint, and x ∈ U and
B ⊂ V . Hence X is regular.

2. Let p: X → Y be a quotient map. Show that if each set p−1({y}) is connected and Y is
connected, then X is connected.

Solution. Suppose U , V are disjoint open sets in X whose union is X. For each y ∈ Y the
set p−1(y) is connected, so it is entirely contained in one of U and V . Hence, U and V are both
saturated sets (equal to unions of preimage sets p−1(y)). Since p is a quotient map, p(U) and p(V )
are open in Y . Since p is surjective, their union is Y . They are disjoint because their preimages
are U and V which are disjoint (this uses the fact that U and V are saturated). Hence, since Y
is connected, one of p(U) and p(V ) must be empty. This implies that one of U and V is empty.
Hence X is connected.

3(a) Suppose X is locally compact and Hausdorff, but not compact. Define the topology for the
one-point compactification X ∪ {∞}. (That is, name all the open sets.)
(b) Give an example of two non-homeomorphic locally compact Hausdorff spaces whose one-point
compactifications are homeomorphic.

Solution.
(a) There are two types of open sets in X ∪ {∞}. Type I sets are the open subsets of X. Type

II sets are all sets of the form (X − C) ∪ {∞}, where C is a compact subset of X.



(b) If you start with a compact Hausdorff space Z and delete a point, the resulting space is
locally compact and Hausdorff, and has one-point compactification homeomorphic to Z.

There are many possible examples. Let Z be a figure-eight in the plane, for example the union
of the two circles of radius one, centered at (±1, 0).

Let X = Z − {(0, 0)} and let Y = Z − {(2, 0)}. Then X is not connected (it has a separation
given by the left and right open half-planes in R2) and Y is connected. Hence, X and Y are not
homeomorphic. To see that Y is connected, it is not hard to show that it is path connected (which
implies connected). Every point can easily be joined to the origin by a path in Y .

Update: here is a simpler example: take Z = [0, 2] and X = [0, 1) ∪ (1, 2], Y = [0, 2). Clearly
Y is connected and X is not.

4. Give the details of the argument showing that if X and Y are connected then so is X×Y . State
carefully any results that you use.

Solution. First, the sets X×{y} and {x}×Y are connected, being homeomorphic to X and Y
respectively. Pick a basepoint (x0, y0) ∈ X×Y . For any y ∈ Y , the set Ty = (X×{y})∪({x0}×Y )
is connected, since it is a union of two connected subspaces of X×Y which have a point in common.
Note that the basepoint is contained in every subspace Ty. Finally, the union

⋃
y∈Y Ty is connected,

since each Ty is connected and they share a common point. This union is all of X × Y , and so
X × Y is connected.

Results used: the union of a collection of connected sets that have a point in common is
connected (Theorem 23.3).

5(a) Give the definitions of components and path components of a space X.
(b) What is the precise relationship between components and path components of a space? Give
proofs and/or counterexamples for your assertions.

Solution.
(a) Components of X are equivalence classes of the relation ∼, where x ∼ y if there is a

connected subspace containing x and y. Path components are equivalence classes for the relation
∼p, where x ∼p y if there is a path in X from x to y (that is, if there is a continuous map
f : [0, 1]→ X with f(0) = x and f(1) = y).

(b) Every path component is contained in a component, but not conversely. Thus, every
component is a disjoint union of path components.

For the first assertion, note that if x ∼p y then let f be a path in X from x to y. Since [0, 1]
is connected and f is continuous, the image f([0, 1]) is connected, and so f(0) ∼ f(1). That is,
x ∼p y implies x ∼ y.

For the second claim, the topologist’s sine curve is an example of a space which is connected,
but has two path components.


