
Exam I Solutions
Topology (Math 5853)

1(a) State the axioms for B to be a basis.
(b) Define the topology T generated by B.
(c) Suppose B1 and B2 are bases generating the topologies T1 and T2 respectively on a set X.
State a necessary and sufficient criterion in terms of B1 and B2 for T1 to be finer than T2.

Solution.
(a) A basis B is a collection of subsets of X such that (i) their union is all of X, and (ii) given

B1, B2 ∈ B and x ∈ B1 ∩B2 there is a B ∈ B such that x ∈ B and B ⊂ B1 ∩B2.
(b) The topology T defined by B is defined as follows. A subset U is in T (ie. is open) if, for

every x ∈ U there is a B ∈ B such that x ∈ B and B ⊂ U . Equivalently, U ∈ T if and only if U
is a union of elements of B.

(c) T1 is finer than T2 if and only if T1 ⊃ T2. In terms of B1 and B2, this means that for
every B2 ∈ B2 and x ∈ B2 there is a B1 ∈ B1 such that x ∈ B1 and B1 ⊂ B2.

2(a) Say what it means for an ordered set A to be well-ordered.
(b) Define the dictionary ordering on A×B, where A and B are ordered sets.
(c) Show that if A and B are well-ordered, then so is A×B (in the dictionary order).

Solution.
(a) An ordered set A is well-ordered if every non-empty subset of A has a smallest element.
(b) The dictionary ordering on A × B is defined by: (a, b) < (a′, b′) if a < a′ or a = a′ and

b < b′.
(c): Let S ⊂ A × B be a non-empty subset. Define A0 ⊂ A to be the set of first coordinates

of elements of S: A0 = {a ∈ A | (a, b) ∈ S for some b ∈ B}. Note that A0 is non-empty, hence
it has a smallest element a0. Next let B0 = {b ∈ B | (a0, b) ∈ S}. Note that B0 is a non-empty
subset of B. Let b0 be the smallest element of B0. Then, (a0, b0) is the smallest element of S. (If
(a, b) ∈ S then either a0 < a and hence (a0, b0) < (a, b), or a0 = a. But then b ∈ B0, and so b0 ≤ b
and therefore (a0, b0) ≤ (a, b).)

3. Let f : R → Rω be given by f(t) = (t, 12 t,
1
4 t,

1
8 t, . . .). Show that f is not continuous if Rω is

given the box topology.

Solution. The coordinate functions of f are given by fn(t) = 1
2n−1 t. Note that f−1n (t) = 2n−1t.

So, the pre-image of the interval (−a, a) under fn is (−2n−1a, 2n−1a).
Let U be the open set (−1, 1)× (− 1

2·2 ,
1
2·2)× (− 1

3·22 ,
1

3·22 )× (− 1
4·23 ,

1
4·23 )× · · · . The nth interval

In is (− 1
n·2n−1 ,

1
n·2n−1 ), which has pre-image (− 1

n ,
1
n) under fn.



Now, f−1(U) = f−1(I1 × I2 × · · · ) = {t ∈ R | fn(t) ∈ In for all n}, which is the intersection of
the sets f−1n (In). So f−1(U) = (−1, 1)∩ (−1

2 ,
1
2)∩ (−1

3 ,
1
3)∩ · · · = {0}. Since this set is not open in

R, the function f is not continuous.

4. Let Y be a Hausdorff space. Suppose g, h : X → Y are continuous maps. Prove that the set
{x ∈ X | g(x) = h(x)} is closed. [Hint: use Y × Y .]

Solution 1. Define f : X → Y ×Y by f(x) = g(x)×h(x). Since its component functions g and
h are continuous, so is f . Recall that a space Y is Hausdorff if and only if the diagonal ∆ is a closed
subset of Y ×Y . Hence, ∆ is closed, and by continuity, f−1(∆) is closed. Finally, note that f(x) ∈ ∆
if and only if g(x) = h(x). Therefore the closed set f−1(∆) is exactly {x ∈ X | g(x) = h(x)}.

Solution 2. We will show that the set S = {x ∈ X | g(x) 6= h(x)} is open in X. If x ∈ S then
g(x) and h(x) are distinct points in Y . Since Y is Hausdorff, there exist disjoint open sets U, V in
Y such that g(x) ∈ U and h(x) ∈ V . Since g and h are continuous, the sets g−1(U) and h−1(V ) are
both open neighborhoods of x. Let W = g−1(U) ∩ h−1(V ), an open neighborhood of x. We claim
that W ⊂ S, which implies that S is open. To see this, if w ∈ W then g(w) ∈ U and h(w) ∈ V ,
and therefore g(w) 6= h(w) since these sets are disjoint in Y . Hence w ∈ S.

5. Let X = Z× [0, 1] and define an equivalence relation ∼ on X by: (n, 1) ∼ (n+ 1, 0) for all n ∈ Z
(no other identifications are made).
(a) Draw a picture of X and also indicate what the quotient space X∗ looks like.
(b) Show that there is a continuous bijection X∗ → R. State carefully what needs to be verified
in order to define this function and know that it is continuous. Verify that the required properties
hold.

Solution.
(a) The set X is a union of disjoint copies of the interval, like this:

· · · | | | | | | | | · · ·

The equivalence relation identifies the top endpoint of each interval with the lower endpoint of the
next interval. Thus, the intervals get joined end to end, to form a line.

(b) Define a function g : Z × [0, 1] → R by g(n, t) = n + t. Note that g(n, 1) = g(n + 1, 0)
and so g is constant on equivalence classes. Hence, g induces a well defined function f : X∗ → R.
According to a theorem from class (Theorem 22.2) f is continuous if and only g is continuous. The
latter function is continuous because it is the restriction of a continuous function R2 → R.

For any r ∈ R we can write r = n + t where n is the largest integer less than or equal to r,
and t ∈ [0, 1). Hence, f is surjective. f is injective as follows: if n + t = n′ + t′ with n, n′ ∈ Z and
t, t′ ∈ [0, 1] then either n = n′ (which implies t = t′) or n < n′ or n′ < n. If n < n′ then t and t′

differ by at least 1, since n, n′ are integers. Since t, t′ ∈ [0, 1] it must be the case that t′ = 0 and
t = 1. But then (n, t) ∼ (n′, t′). The case n′ < n is similar. We have shown that g(n, t) = g(n′, t′)
implies (n, t) ∼ (n′, t′), which means that the induced function f is injective.

Alternatively, one can use Corollary 22.3 and observe that the equivalence classes for ∼ are
exactly the pre-images under g of points of R. Then, the corollary says that f is a bijection.


