Exam I Solutions

Topology (Math 5853)

1(a) State the axioms for \mathscr{B} to be a basis.
(b) Define the topology \mathscr{T} generated by \mathscr{B}.
(c) Suppose \mathscr{B}_{1} and \mathscr{B}_{2} are bases generating the topologies \mathscr{T}_{1} and \mathscr{T}_{2} respectively on a set X. State a necessary and sufficient criterion in terms of \mathscr{B}_{1} and \mathscr{B}_{2} for \mathscr{T}_{1} to be finer than \mathscr{T}_{2}.

Solution.

(A) A basis \mathscr{B} is a collection of subsets of X such that (i) their union is all of X, and (ii) given $B_{1}, B_{2} \in \mathscr{B}$ and $x \in B_{1} \cap B_{2}$ there is a $B \in \mathscr{B}$ such that $x \in B$ and $B \subset B_{1} \cap B_{2}$.
(B) The topology \mathscr{T} defined by \mathscr{B} is defined as follows. A subset U is in \mathscr{T} (ie. is open) if, for every $x \in U$ there is a $B \in \mathscr{B}$ such that $x \in B$ and $B \subset U$. Equivalently, $U \in \mathscr{T}$ if and only if U is a union of elements of \mathscr{B}.
(c) \mathscr{T}_{1} is finer than \mathscr{T}_{2} if and only if $\mathscr{T}_{1} \supset \mathscr{T}_{2}$. In terms of \mathscr{B}_{1} and \mathscr{B}_{2}, this means that for every $B_{2} \in \mathscr{B}_{2}$ and $x \in B_{2}$ there is a $B_{1} \in \mathscr{B}_{1}$ such that $x \in B_{1}$ and $B_{1} \subset B_{2}$.

2(a) Say what it means for an ordered set A to be well-ordered.
(b) Define the dictionary ordering on $A \times B$, where A and B are ordered sets.
(c) Show that if A and B are well-ordered, then so is $A \times B$ (in the dictionary order).

Solution.

(A) An ordered set A is well-ordered if every non-empty subset of A has a smallest element.
(в) The dictionary ordering on $A \times B$ is defined by: $(a, b)<\left(a^{\prime}, b^{\prime}\right)$ if $a<a^{\prime}$ or $a=a^{\prime}$ and $b<b^{\prime}$.
(c): Let $S \subset A \times B$ be a non-empty subset. Define $A_{0} \subset A$ to be the set of first coordinates of elements of $S: A_{0}=\{a \in A \mid(a, b) \in S$ for some $b \in B\}$. Note that A_{0} is non-empty, hence it has a smallest element a_{0}. Next let $B_{0}=\left\{b \in B \mid\left(a_{0}, b\right) \in S\right\}$. Note that B_{0} is a non-empty subset of B. Let b_{0} be the smallest element of B_{0}. Then, $\left(a_{0}, b_{0}\right)$ is the smallest element of S. (If $(a, b) \in S$ then either $a_{0}<a$ and hence $\left(a_{0}, b_{0}\right)<(a, b)$, or $a_{0}=a$. But then $b \in B_{0}$, and so $b_{0} \leq b$ and therefore $\left(a_{0}, b_{0}\right) \leq(a, b)$.)
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{\omega}$ be given by $f(t)=\left(t, \frac{1}{2} t, \frac{1}{4} t, \frac{1}{8} t, \ldots\right)$. Show that f is not continuous if \mathbb{R}^{ω} is given the box topology.

Solution. The coordinate functions of f are given by $f_{n}(t)=\frac{1}{2^{n-1}} t$. Note that $f_{n}^{-1}(t)=2^{n-1} t$. So, the pre-image of the interval $(-a, a)$ under f_{n} is $\left(-2^{n-1} a, 2^{n-1} a\right)$.

Let U be the open set $(-1,1) \times\left(-\frac{1}{2 \cdot 2}, \frac{1}{2 \cdot 2}\right) \times\left(-\frac{1}{3 \cdot 2^{2}}, \frac{1}{3 \cdot 2^{2}}\right) \times\left(-\frac{1}{4 \cdot 2^{3}}, \frac{1}{4 \cdot 2^{3}}\right) \times \cdots$. The nth interval I_{n} is $\left(-\frac{1}{n \cdot 2^{n-1}}, \frac{1}{n \cdot 2^{n-1}}\right)$, which has pre-image $\left(-\frac{1}{n}, \frac{1}{n}\right)$ under f_{n}.

Now, $f^{-1}(U)=f^{-1}\left(I_{1} \times I_{2} \times \cdots\right)=\left\{t \in \mathbb{R} \mid f_{n}(t) \in I_{n}\right.$ for all $\left.n\right\}$, which is the intersection of the sets $f_{n}^{-1}\left(I_{n}\right)$. So $f^{-1}(U)=(-1,1) \cap\left(-\frac{1}{2}, \frac{1}{2}\right) \cap\left(-\frac{1}{3}, \frac{1}{3}\right) \cap \cdots=\{0\}$. Since this set is not open in \mathbb{R}, the function f is not continuous.
4. Let Y be a Hausdorff space. Suppose $g, h: X \rightarrow Y$ are continuous maps. Prove that the set $\{x \in X \mid g(x)=h(x)\}$ is closed. [Hint: use $Y \times Y$.]

Solution 1. Define $f: X \rightarrow Y \times Y$ by $f(x)=g(x) \times h(x)$. Since its component functions g and h are continuous, so is f. Recall that a space Y is Hausdorff if and only if the diagonal Δ is a closed subset of $Y \times Y$. Hence, Δ is closed, and by continuity, $f^{-1}(\Delta)$ is closed. Finally, note that $f(x) \in \Delta$ if and only if $g(x)=h(x)$. Therefore the closed set $f^{-1}(\Delta)$ is exactly $\{x \in X \mid g(x)=h(x)\}$.

Solution 2. We will show that the set $S=\{x \in X \mid g(x) \neq h(x)\}$ is open in X. If $x \in S$ then $g(x)$ and $h(x)$ are distinct points in Y. Since Y is Hausdorff, there exist disjoint open sets U, V in Y such that $g(x) \in U$ and $h(x) \in V$. Since g and h are continuous, the sets $g^{-1}(U)$ and $h^{-1}(V)$ are both open neighborhoods of x. Let $W=g^{-1}(U) \cap h^{-1}(V)$, an open neighborhood of x. We claim that $W \subset S$, which implies that S is open. To see this, if $w \in W$ then $g(w) \in U$ and $h(w) \in V$, and therefore $g(w) \neq h(w)$ since these sets are disjoint in Y. Hence $w \in S$.
5. Let $X=\mathbb{Z} \times[0,1]$ and define an equivalence relation \sim on X by: $(n, 1) \sim(n+1,0)$ for all $n \in \mathbb{Z}$ (no other identifications are made).
(a) Draw a picture of X and also indicate what the quotient space X^{*} looks like.
(b) Show that there is a continuous bijection $X^{*} \rightarrow \mathbb{R}$. State carefully what needs to be verified in order to define this function and know that it is continuous. Verify that the required properties hold.

Solution.

(A) The set X is a union of disjoint copies of the interval, like this:

$$
\cdots \quad|\quad| \quad|\quad| \quad|\quad| \quad \cdots
$$

The equivalence relation identifies the top endpoint of each interval with the lower endpoint of the next interval. Thus, the intervals get joined end to end, to form a line.
(в) Define a function $g: \mathbb{Z} \times[0,1] \rightarrow \mathbb{R}$ by $g(n, t)=n+t$. Note that $g(n, 1)=g(n+1,0)$ and so g is constant on equivalence classes. Hence, g induces a well defined function $f: X^{*} \rightarrow \mathbb{R}$. According to a theorem from class (Theorem 22.2) f is continuous if and only g is continuous. The latter function is continuous because it is the restriction of a continuous function $\mathbb{R}^{2} \rightarrow \mathbb{R}$.

For any $r \in \mathbb{R}$ we can write $r=n+t$ where n is the largest integer less than or equal to r, and $t \in[0,1)$. Hence, f is surjective. f is injective as follows: if $n+t=n^{\prime}+t^{\prime}$ with $n, n^{\prime} \in \mathbb{Z}$ and $t, t^{\prime} \in[0,1]$ then either $n=n^{\prime}$ (which implies $t=t^{\prime}$) or $n<n^{\prime}$ or $n^{\prime}<n$. If $n<n^{\prime}$ then t and t^{\prime} differ by at least 1 , since n, n^{\prime} are integers. Since $t, t^{\prime} \in[0,1]$ it must be the case that $t^{\prime}=0$ and $t=1$. But then $(n, t) \sim\left(n^{\prime}, t^{\prime}\right)$. The case $n^{\prime}<n$ is similar. We have shown that $g(n, t)=g\left(n^{\prime}, t^{\prime}\right)$ implies $(n, t) \sim\left(n^{\prime}, t^{\prime}\right)$, which means that the induced function f is injective.

Alternatively, one can use Corollary 22.3 and observe that the equivalence classes for \sim are exactly the pre-images under g of points of \mathbb{R}. Then, the corollary says that f is a bijection.

