
Final Exam Solutions
Topology I (Math 5853)

1. Let R′ be the set R with the topology given by the basis B = {[a, b) | a < b and a, b ∈ Q}.
Determine the closures of the following sets in R′:
(a) A = (0,

√
2)

(b) B = (
√

2, 3)

Solution.
(a) A = [0,

√
2]. We claim that 0 and

√
2 are limit points of A, and that no other points outside

of A are limit points. Every basic open neighborhood of 0 has the form [a, b) with a, b rational
and a ≤ 0 < b. Then b/2 is in the intersection [a, b) ∩ A, so 0 is a limit point. Every basic open
neighborhood of

√
2 has the form [a, b) with a, b rational and a <

√
2 < b, because

√
2 is irrational.

Now any number x between a and
√

2 is in the intersection [a, b) ∩A, and so
√

2 is a limit point.
If x >

√
2 then there is a rational r between x and

√
2, so [r, x + 1) is a neighborhood of x

disjoint from A. If x < 0 then [r, 0) is a neighborhood of x disjoint from A, for any rational r < x.
(b) B = [

√
2, 3). We claim that

√
2 is the only limit point of B outside of B. Every basic open

neighborhood of
√

2 has the form [a, b) with a, b rational and a <
√

2 < b. Let x be a rational
between

√
2 and b, and less than 3. Then x is in [a, b) ∩B, so

√
2 is a limit point.

If x ≥ 3 then [x, x + 1) is a neighborhood of x disjoint from B. If x <
√

2 then there exist
rational numbers r, s such that r < x < s <

√
2. Then [r, s) is a neighborhood of x that is disjoint

from B.

2. Prove the Tube Lemma: Consider the product space X × Y where Y is compact. If N is an
open set of X × Y containing the subset x0 × Y , then x0 has a neighborhood W in X such that
W × Y is contained in N .

Solution. This is Lemma 26.8 of Munkres.

3. Prove the following lemma: if f : X → Y is a continuous injective map and X is compact and
Y is Hausdorff, then f is an embedding.

Solution. Let g : X → f(X) be the same as f , but with restricted range. Now g is a
continuous bijection. Note that f(X) is Hausdorff since it is a subspace of the Hausdorff space Y .
We need to show that g−1 is continuous for f to be an embedding.

Let C ⊂ X be a closed set. Since X is compact, so is C. Since g is continuous, g(C) is compact.
Since f(X) is Hausdorff, g(C) is closed in f(X). This shows g−1 is continuous.

4. Let r : S1 → S1 be a reflection of the circle (e.g. (x, y) 7→ (−x, y) in the plane). The Klein bottle
K is the quotient space of [0, 1] × S1 under the following equivalence relation: (0, z) ∼ (1, r(z))
for all z ∈ S1, and (t, z) is not equivalent to anything except itself, for t 6= 0, 1. [That is, glue
one boundary circle to the other, using the reflection r to join them. The reflecion means that you
won’t get a torus.]



(a) Explain why K is compact.

(b) Let C1 ⊂ K be (the image of) the circle {13} × S
1, and let C2 ⊂ K be a small embedded circle

inside (12 ,
3
4)×S1 as in the picture. There is a continuous map g : K → R3 as shown in the picture,

which is almost injective. Specifically, the restriction of g to K − C1 is injective, and so is the
restriction to K − C2.

Assuming g exists as described, use Urysohn’s Lemma to construct a continuous map of K into
R3 × R = R4 which is an embedding. You may assume that K is Hausdorff.

Solution.
(a) We know the spaces [0, 1] and S1 are compact, so their product [0, 1]× S1 is also compact.

From the definition of K, there is a quotient map p : [0, 1]×S1 → K. Quotient maps are continuous
and surjective, so K is the image under p of the compact space [0, 1] × S1. Hence K is compact.
(So: every quotient space of a compact space is compact.)

(b) Since K is Hausdorff and C1 and C2 are homeomorphic to S1 and therefore are compact, we
can conclude that C1 and C2 are closed sets in K. They are also disjoint. Since K is compact and
Hausdorff, it is normal, and so the Urysohn Lemma applies. It says there is a continuous function
f : K → [0, 1] which takes C1 to {0} and C2 to {1}. Composing with the inclusion map [0, 1]→ R,
there is a continuous function f ′ : K → R with f ′(C1) = {0} and f ′(C2) = {1}.

Define h : K → R3×R by h(x) = (g(x), f ′(x)). This is continuous, since its coordinate functions
g and f ′ are continuous. Also, h is injective. Consider two distinct points x, y ∈ K. If x and y are
in C1 and C2, then f ′(x) 6= f ′(y) and so h(x) 6= h(y). Otherwise, at least one of C1, C2 does not
contain x or y. Without loss of generality suppose C1 does not contain x or y. Then x, y ∈ K−C1,
and g is injective on this subset. So, g(x) 6= g(y) and hence h(x) 6= h(y).

Finally, since h is a continuous injective map from a compact space to a Hausdorff space, it is
an embedding by problem 3.

5. Let X be the quotient space obtained from R× {0, 1} by identifying x× 0 with x× 1 for every
number x with |x| > 1. [You may want to draw a picture. Think about which sets in X are open
sets in the quotient topology.]

(a) Does X satisfy the T1 axiom? Why or why not?

(b) Is X Hausdorff? Why or why not?



Solution. This problem is quite tricky. The key is to understand the open neighborhoods of
the points of X correspoonding to ±1× 0 and ±1× 1. Remember, open sets in X are the images
of saturated open sets in R× {0, 1}. Here is a picture of the underlying set for X:

Here is a small open neighborhood of [1× 1] (explanation in (b) below):

All points other than the four “corners” have neighborhoods homeomorphic to ordinary intervals.
(a) To show that X is a T1 space, let x and y be distinct points in X. If their R-coordinates

differ (note, X is not a product, but the R-coordinate still makes sense) then they can in fact be
separated by open sets (as in the Hausdorff property). If x and y are of the form {[r × 0], [r × 1]}
with |r| < 1 then they can be separated by disjoint open neighborhoods which are the images of
the sets U × {0} and U × {1} for some U ⊂ (−1, 1).

If {x, y} = {[1 × 0], [1 × 1]} then each of x, y has a neighborhood, as in the picture above, not
containing the other. Similarly for {x, y} = {[−1× 0], [−1× 1]}.

(b) X is not Hausdorff. Use the points [1× 0] and [1× 1]. Every neighborhood of [1× 1] must
contain a set as shown in the picture. Its preimage in R×{0, 1} contains an interval (1−ε, 1+ε)×{1}
around 1 × 1, and since it is saturated, it must also contain (1, 1 + ε) × {0}. Neighborhoods of
the point [1 × 0] must contain a similar set. Two such neighborhoods will always have points in
common.

6. Let X be a compact metric space and suppose that f : X → X is an isometry : d(f(x), f(y)) =
d(x, y) for all x, y ∈ X. Prove that f is a homeomorphism. [Hint for surjectivity: if not, construct
a sequence having no limit point.]

Solution. For injectivity, if f(x) = f(y) then d(f(x), f(y)) = 0. Hence d(x, y) = 0 which
implies that x = y.



For continuity, note that given x ∈ X and ε > 0, let δ = ε. Then, d(x, y) < δ implies
d(f(x), f(y)) < ε because d(x, y) = d(f(x), f(y)). Hence f is continuous (by the metric space
characterization of continuity).

Note that X is Hausdorff, being a metric space. So compact sets are the same as closed sets.
Since f is continuous, f(C) is compact, and closed. If f is not surjective, then X − f(X) is a
non-empty open set. Pick a point z ∈ X − f(X) and an open ball B(z, δ) disjoint from f(X).

Define z1 = f(z), z2 = f(z1), z3 = f(z2), and so on. For any m < n we have

d(zm, zn) = d(zm−1, zn−1) = · · · = d(z, zn−m)

and the latter distance is at least δ because zn−m ∈ f(X). Thus, every pair of points in the set
{zi | i ∈ Z+} has distance δ or greater. This is an infinite subset of a compact space which has the
discrete topology, which is a contradiction. Hence, f is surjective.

Finally, since f is a bijection, it is a homeomorphism by problem 3. (Alternatively, f−1 is
continuous for the same reason as f .)

7. Let A ⊂ Rω be defined by

A = {(xi) ∈ Rω | xi = 0 for all but finitely many i }.

(a) Prove that A is dense in Rω with the product topology.

(b) Prove that A is not dense in Rω with the box topology.

Solution.
(a) Let (xi) be a point in Rω and let U =

∏
i Ui be a basic open neighborhood of (xi). Then

Ui = R for all but finitely many i. Define the point (yi) by letting yi = 0 if Ui = R and yi = xi
otherwise. Then (yi) is in U and in A. Hence (xi) is a limit point of A. Since (xi) was arbitrary,
A is dense.

(b) In the box topology the set

U = (1, 2)× (1, 2)× (1, 2)× · · ·

is an open set, and it is non-empty. It is also disjoint from A, since no point of U has any zero
coordinates. Hence, A is not dense; every point of U fails to be a limit point of A.


