Final Exam Solutions

Topology I (Math 5853)

1. Let \mathbb{R}^{\prime} be the set \mathbb{R} with the topology given by the basis $\mathcal{B}=\{[a, b) \mid a<b$ and $a, b \in \mathbb{Q}\}$. Determine the closures of the following sets in \mathbb{R}^{\prime} :
(a) $A=(0, \sqrt{2})$
(b) $B=(\sqrt{2}, 3)$

Solution.

(A) $\bar{A}=[0, \sqrt{2}]$. We claim that 0 and $\sqrt{2}$ are limit points of A, and that no other points outside of A are limit points. Every basic open neighborhood of 0 has the form $[a, b)$ with a, b rational and $a \leq 0<b$. Then $b / 2$ is in the intersection $[a, b) \cap A$, so 0 is a limit point. Every basic open neighborhood of $\sqrt{2}$ has the form $[a, b)$ with a, b rational and $a<\sqrt{2}<b$, because $\sqrt{2}$ is irrational. Now any number x between a and $\sqrt{2}$ is in the intersection $[a, b) \cap A$, and so $\sqrt{2}$ is a limit point.

If $x>\sqrt{2}$ then there is a rational r between x and $\sqrt{2}$, so $[r, x+1)$ is a neighborhood of x disjoint from A. If $x<0$ then $[r, 0)$ is a neighborhood of x disjoint from A, for any rational $r<x$.
(в) $\bar{B}=[\sqrt{2}, 3$). We claim that $\sqrt{2}$ is the only limit point of B outside of B. Every basic open neighborhood of $\sqrt{2}$ has the form $[a, b)$ with a, b rational and $a<\sqrt{2}<b$. Let x be a rational between $\sqrt{2}$ and b, and less than 3 . Then x is in $[a, b) \cap B$, so $\sqrt{2}$ is a limit point.

If $x \geq 3$ then $[x, x+1)$ is a neighborhood of x disjoint from B. If $x<\sqrt{2}$ then there exist rational numbers r, s such that $r<x<s<\sqrt{2}$. Then $[r, s)$ is a neighborhood of x that is disjoint from B.
2. Prove the Tube Lemma: Consider the product space $X \times Y$ where Y is compact. If N is an open set of $X \times Y$ containing the subset $x_{0} \times Y$, then x_{0} has a neighborhood W in X such that $W \times Y$ is contained in N.

Solution. This is Lemma 26.8 of Munkres.
3. Prove the following lemma: if $f: X \rightarrow Y$ is a continuous injective map and X is compact and Y is Hausdorff, then f is an embedding.

Solution. Let $g: X \rightarrow f(X)$ be the same as f, but with restricted range. Now g is a continuous bijection. Note that $f(X)$ is Hausdorff since it is a subspace of the Hausdorff space Y. We need to show that g^{-1} is continuous for f to be an embedding.

Let $C \subset X$ be a closed set. Since X is compact, so is C. Since g is continuous, $g(C)$ is compact. Since $f(X)$ is Hausdorff, $g(C)$ is closed in $f(X)$. This shows g^{-1} is continuous.
4. Let $r: S^{1} \rightarrow S^{1}$ be a reflection of the circle (e.g. $(x, y) \mapsto(-x, y)$ in the plane). The Klein bottle K is the quotient space of $[0,1] \times S^{1}$ under the following equivalence relation: $(0, z) \sim(1, r(z))$ for all $z \in S^{1}$, and (t, z) is not equivalent to anything except itself, for $t \neq 0,1$. [That is, glue one boundary circle to the other, using the reflection r to join them. The reflecion means that you won't get a torus.]

(a) Explain why K is compact.
(b) Let $C_{1} \subset K$ be (the image of) the circle $\left\{\frac{1}{3}\right\} \times S^{1}$, and let $C_{2} \subset K$ be a small embedded circle inside $\left(\frac{1}{2}, \frac{3}{4}\right) \times S^{1}$ as in the picture. There is a continuous map $g: K \rightarrow \mathbb{R}^{3}$ as shown in the picture, which is almost injective. Specifically, the restriction of g to $K-C_{1}$ is injective, and so is the restriction to $K-C_{2}$.

Assuming g exists as described, use Urysohn's Lemma to construct a continuous map of K into $\mathbb{R}^{3} \times \mathbb{R}=\mathbb{R}^{4}$ which is an embedding. You may assume that K is Hausdorff.

Solution.
(a) We know the spaces $[0,1]$ and S^{1} are compact, so their product $[0,1] \times S^{1}$ is also compact. From the definition of K, there is a quotient map $p:[0,1] \times S^{1} \rightarrow K$. Quotient maps are continuous and surjective, so K is the image under p of the compact space $[0,1] \times S^{1}$. Hence K is compact. (So: every quotient space of a compact space is compact.)
(в) Since K is Hausdorff and C_{1} and C_{2} are homeomorphic to S^{1} and therefore are compact, we can conclude that C_{1} and C_{2} are closed sets in K. They are also disjoint. Since K is compact and Hausdorff, it is normal, and so the Urysohn Lemma applies. It says there is a continuous function $f: K \rightarrow[0,1]$ which takes C_{1} to $\{0\}$ and C_{2} to $\{1\}$. Composing with the inclusion map $[0,1] \rightarrow \mathbb{R}$, there is a continuous function $f^{\prime}: K \rightarrow \mathbb{R}$ with $f^{\prime}\left(C_{1}\right)=\{0\}$ and $f^{\prime}\left(C_{2}\right)=\{1\}$.

Define $h: K \rightarrow \mathbb{R}^{3} \times \mathbb{R}$ by $h(x)=\left(g(x), f^{\prime}(x)\right)$. This is continuous, since its coordinate functions g and f^{\prime} are continuous. Also, h is injective. Consider two distinct points $x, y \in K$. If x and y are in C_{1} and C_{2}, then $f^{\prime}(x) \neq f^{\prime}(y)$ and so $h(x) \neq h(y)$. Otherwise, at least one of C_{1}, C_{2} does not contain x or y. Without loss of generality suppose C_{1} does not contain x or y. Then $x, y \in K-C_{1}$, and g is injective on this subset. So, $g(x) \neq g(y)$ and hence $h(x) \neq h(y)$.

Finally, since h is a continuous injective map from a compact space to a Hausdorff space, it is an embedding by problem 3 .
5. Let X be the quotient space obtained from $\mathbb{R} \times\{0,1\}$ by identifying $x \times 0$ with $x \times 1$ for every number x with $|x|>1$. [You may want to draw a picture. Think about which sets in X are open sets in the quotient topology.]
(a) Does X satisfy the T_{1} axiom? Why or why not?
(b) Is X Hausdorff? Why or why not?

Solution. This problem is quite tricky. The key is to understand the open neighborhoods of the points of X correspoonding to $\pm 1 \times 0$ and $\pm 1 \times 1$. Remember, open sets in X are the images of saturated open sets in $\mathbb{R} \times\{0,1\}$. Here is a picture of the underlying set for X :

Here is a small open neighborhood of $[1 \times 1]$ (explanation in (b) below):

All points other than the four "corners" have neighborhoods homeomorphic to ordinary intervals.
(A) To show that X is a T_{1} space, let x and y be distinct points in X. If their \mathbb{R}-coordinates differ (note, X is not a product, but the \mathbb{R}-coordinate still makes sense) then they can in fact be separated by open sets (as in the Hausdorff property). If x and y are of the form $\{[r \times 0],[r \times 1]\}$ with $|r|<1$ then they can be separated by disjoint open neighborhoods which are the images of the sets $U \times\{0\}$ and $U \times\{1\}$ for some $U \subset(-1,1)$.

If $\{x, y\}=\{[1 \times 0],[1 \times 1]\}$ then each of x, y has a neighborhood, as in the picture above, not containing the other. Similarly for $\{x, y\}=\{[-1 \times 0],[-1 \times 1]\}$.
(в) X is not Hausdorff. Use the points $[1 \times 0]$ and $[1 \times 1]$. Every neighborhood of $[1 \times 1]$ must contain a set as shown in the picture. Its preimage in $\mathbb{R} \times\{0,1\}$ contains an interval $(1-\epsilon, 1+\epsilon) \times\{1\}$ around 1×1, and since it is saturated, it must also contain $(1,1+\epsilon) \times\{0\}$. Neighborhoods of the point $[1 \times 0]$ must contain a similar set. Two such neighborhoods will always have points in common.
6. Let X be a compact metric space and suppose that $f: X \rightarrow X$ is an isometry: $d(f(x), f(y))=$ $d(x, y)$ for all $x, y \in X$. Prove that f is a homeomorphism. [Hint for surjectivity: if not, construct a sequence having no limit point.]

Solution. For injectivity, if $f(x)=f(y)$ then $d(f(x), f(y))=0$. Hence $d(x, y)=0$ which implies that $x=y$.

For continuity, note that given $x \in X$ and $\epsilon>0$, let $\delta=\epsilon$. Then, $d(x, y)<\delta$ implies $d(f(x), f(y))<\epsilon$ because $d(x, y)=d(f(x), f(y))$. Hence f is continuous (by the metric space characterization of continuity).

Note that X is Hausdorff, being a metric space. So compact sets are the same as closed sets. Since f is continuous, $f(C)$ is compact, and closed. If f is not surjective, then $X-f(X)$ is a non-empty open set. Pick a point $z \in X-f(X)$ and an open ball $B(z, \delta)$ disjoint from $f(X)$.

Define $z_{1}=f(z), z_{2}=f\left(z_{1}\right), z_{3}=f\left(z_{2}\right)$, and so on. For any $m<n$ we have

$$
d\left(z_{m}, z_{n}\right)=d\left(z_{m-1}, z_{n-1}\right)=\cdots=d\left(z, z_{n-m}\right)
$$

and the latter distance is at least δ because $z_{n-m} \in f(X)$. Thus, every pair of points in the set $\left\{z_{i} \mid i \in \mathbb{Z}_{+}\right\}$has distance δ or greater. This is an infinite subset of a compact space which has the discrete topology, which is a contradiction. Hence, f is surjective.

Finally, since f is a bijection, it is a homeomorphism by problem 3. (Alternatively, f^{-1} is continuous for the same reason as f.)
7. Let $A \subset \mathbb{R}^{\omega}$ be defined by

$$
A=\left\{\left(x_{i}\right) \in \mathbb{R}^{\omega} \mid x_{i}=0 \text { for all but finitely many } i\right\} .
$$

(a) Prove that A is dense in \mathbb{R}^{ω} with the product topology.
(b) Prove that A is not dense in \mathbb{R}^{ω} with the box topology.

Solution.

(A) Let $\left(x_{i}\right)$ be a point in \mathbb{R}^{ω} and let $U=\prod_{i} U_{i}$ be a basic open neighborhood of $\left(x_{i}\right)$. Then $U_{i}=\mathbb{R}$ for all but finitely many i. Define the point $\left(y_{i}\right)$ by letting $y_{i}=0$ if $U_{i}=\mathbb{R}$ and $y_{i}=x_{i}$ otherwise. Then $\left(y_{i}\right)$ is in U and in A. Hence $\left(x_{i}\right)$ is a limit point of A. Since $\left(x_{i}\right)$ was arbitrary, A is dense.
(b) In the box topology the set

$$
U=(1,2) \times(1,2) \times(1,2) \times \cdots
$$

is an open set, and it is non-empty. It is also disjoint from A, since no point of U has any zero coordinates. Hence, A is not dense; every point of U fails to be a limit point of A.

