Final Exam

Topology I (Math 5853)
December 11, 2013

1. Let \mathbb{R}^{\prime} be the set \mathbb{R} with the topology given by the basis $\mathcal{B}=\{[a, b) \mid a<b$ and $a, b \in \mathbb{Q}\}$. Determine the closures of the following sets in \mathbb{R}^{\prime} :
(a) $A=(0, \sqrt{2})$
(b) $B=(\sqrt{2}, 3)$
2. Prove the Tube Lemma: Consider the product space $X \times Y$ where Y is compact. If N is an open set of $X \times Y$ containing the subset $x_{0} \times Y$, then x_{0} has a neighborhood W in X such that $W \times Y$ is contained in N.
3. Prove the following lemma: if $f: X \rightarrow Y$ is a continuous injective map and X is compact and Y is Hausdorff, then f is an embedding.
4. Let $r: S^{1} \rightarrow S^{1}$ be a reflection of the circle (e.g. $(x, y) \mapsto(-x, y)$ in the plane). The Klein bottle K is the quotient space of $[0,1] \times S^{1}$ under the following equivalence relation: $(0, z) \sim(1, r(z))$ for all $z \in S^{1}$, and (t, z) is not equivalent to anything except itself, for $t \neq 0,1$. [That is, glue one boundary circle to the other, using the reflection r to join them. The reflecion means that you wont get a torus.]

(a) Explain why K is compact.
(b) Let $C_{1} \subset K$ be (the image of) the circle $\left\{\frac{1}{3}\right\} \times S^{1}$, and let $C_{2} \subset K$ be a small embedded circle inside $\left(\frac{1}{2}, \frac{3}{4}\right) \times S^{1}$ as in the picture. There is a continuous map $g: K \rightarrow \mathbb{R}^{3}$ as shown in the picture, which is almost injective. Specifically, the restriction of g to $K-C_{1}$ is injective, and so is the restriction to $K-C_{2}$.

Assuming g exists as described, use Urysohn's Lemma to construct a continuous map of K into $\mathbb{R}^{3} \times \mathbb{R}=\mathbb{R}^{4}$ which is an embedding. You may assume that K is Hausdorff.
5. Let X be the quotient space obtained from $\mathbb{R} \times\{0,1\}$ by identifying $x \times 0$ with $x \times 1$ for every number x with $|x|>1$. [You may want to draw a picture. Think about which sets in X are open sets in the quotient topology.]
(a) Does X satisfy the T_{1} axiom? Why or why not?
(b) Is X Hausdorff? Why or why not?
6. Let X be a compact metric space and suppose that $f: X \rightarrow X$ is an isometry: $d(f(x), f(y))=$ $d(x, y)$ for all $x, y \in X$. Prove that f is a homeomorphism. [Hint for surjectivity: if not, construct a sequence having no limit point.]
7. Let $A \subset \mathbb{R}^{\omega}$ be defined by

$$
A=\left\{\left(x_{i}\right) \in \mathbb{R}^{\omega} \mid x_{i}=0 \text { for all but finitely many } i\right\} .
$$

(a) Prove that A is dense in \mathbb{R}^{ω} with the product topology.
(b) Prove that A is not dense in \mathbb{R}^{ω} with the box topology.

