Exam I Topology (Math 5853) October 14, 2013

1(a) State the axioms for \mathscr{B} to be a basis.

(b) Define the topology \mathscr{T} generated by \mathscr{B} .

(c) Suppose \mathscr{B}_1 and \mathscr{B}_2 are bases generating the topologies \mathscr{T}_1 and \mathscr{T}_2 respectively on a set X. State a necessary and sufficient criterion in terms of \mathscr{B}_1 and \mathscr{B}_2 for \mathscr{T}_1 to be finer than \mathscr{T}_2 .

2(a) Say what it means for an ordered set A to be *well-ordered*.

(b) Define the dictionary ordering on $A \times B$, where A and B are ordered sets.

(c) Show that if A and B are well-ordered, then so is $A \times B$ (in the dictionary order).

3. Let $f: \mathbb{R} \to \mathbb{R}^{\omega}$ be given by $f(t) = (t, \frac{1}{2}t, \frac{1}{4}t, \frac{1}{8}t, \ldots)$. Show that f is not continuous if \mathbb{R}^{ω} is given the box topology.

4. Let Y be a Hausdorff space. Suppose $g, h: X \to Y$ are continuous maps. Prove that the set $\{x \in X \mid g(x) = h(x)\}$ is closed. [Hint: use $Y \times Y$.]

5. Let $X = \mathbb{Z} \times [0, 1]$ and define an equivalence relation \sim on X by: $(n, 1) \sim (n+1, 0)$ for all $n \in \mathbb{Z}$ (no other identifications are made).

(a) Draw a picture of X and also indicate what the quotient space X^* looks like.

(b) Show that there is a continuous bijection $X^* \to \mathbb{R}$. State carefully what needs to be verified in order to define this function and know that it is continuous. Verify that the required properties hold.