Exam II Topology (Math 5853) October 25, 2005

1. Let X be the set of real numbers with the finite complement topology (complements of finite sets are open).

- (a) Does X satisfy the T_1 axiom?
- (b) Is X Hausdorff?
- (c) To what point or points does the sequence $x_n = 1/n$ converge?

2. Consider the space $X = \mathbb{Z}_+ \times [0, 1)$ in the dictionary order topology. (The sets \mathbb{Z}_+ and [0, 1) are given their usual orderings.) Construct a homeomorphism from X to the subspace $[0, \infty) \subset \mathbb{R}$ (and show that it is a homeomorphism).

3. Let $f: A \to X \times Y$ be given by $f(a) = (f_1(a), f_2(a))$ where $f_1: A \to X$ and $f_2: A \to Y$ are functions. Show that if f_1 and f_2 are continuous then so is f.

4. Let $f: \mathbb{R} \to \mathbb{R}^{\omega}$ be given by $f(t) = (t, \frac{1}{2}t, \frac{1}{4}t, \frac{1}{8}t, \dots)$.

- (a) Show that f is continuous if \mathbb{R}^{ω} is given the product topology.
- (b) Show that f is not continuous if \mathbb{R}^{ω} is given the box topology.

5. Determine the closures of the following sets:

(a) $A = \{(1/n) \times 0 \mid n \in \mathbb{Z}_+\}$ in the ordered square $(I \times I)$ in the dictionary topology) (b) $K = \{1/n \mid n \in \mathbb{Z}_+\}$ in the set \mathbb{R} with topology given by the basis $\{(-\infty, a) \mid a \in \mathbb{R}\}$ (c) $B = \{x \times \frac{1}{2} \mid 0 < x < 1\}$ in the ordered square

6. Let a, b be points in a space Z. A path from a to b is a continuous map $f: [0,1] \to Z$ such that f(0) = a and f(1) = b. Consider the following subspace of \mathbb{R}^2 :

$$Z = \{(x, y) \mid x \in \mathbb{Q}, \ y > 0\} \ \cup \ \{(x, 0) \mid x \in \mathbb{R}\}.$$

Let $a = (x_a, y_a) \in Z$ and $b = (x_b, y_b) \in Z$, where $x_a < x_b$.

(a) Show that for any path in Z from a to b, its image contains the interval $(x_a, x_b) \times \{0\}$. (b) Given arbitrary points $a, b \in Z$, describe the shortest path in Z from a to b, and write down an expression for its length. (This defines a metric on Z, different from the usual metric in \mathbb{R}^2 .)