Exam II

Topology (Math 5853)
October 25, 2005

1. Let X be the set of real numbers with the finite complement topology (complements of finite sets are open).
(a) Does X satisfy the T_{1} axiom?
(b) Is X Hausdorff?
(c) To what point or points does the sequence $x_{n}=1 / n$ converge?
2. Consider the space $X=\mathbb{Z}_{+} \times[0,1)$ in the dictionary order topology. (The sets \mathbb{Z}_{+}and $[0,1)$ are given their usual orderings.) Construct a homeomorphism from X to the subspace $[0, \infty) \subset \mathbb{R}$ (and show that it is a homeomorphism).
3. Let $f: A \rightarrow X \times Y$ be given by $f(a)=\left(f_{1}(a), f_{2}(a)\right)$ where $f_{1}: A \rightarrow X$ and $f_{2}: A \rightarrow Y$ are functions. Show that if f_{1} and f_{2} are continuous then so is f.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{\omega}$ be given by $f(t)=\left(t, \frac{1}{2} t, \frac{1}{4} t, \frac{1}{8} t, \ldots\right)$.
(a) Show that f is continuous if \mathbb{R}^{ω} is given the product topology.
(b) Show that f is not continuous if \mathbb{R}^{ω} is given the box topology.
5. Determine the closures of the following sets:
(a) $A=\left\{(1 / n) \times 0 \mid n \in \mathbb{Z}_{+}\right\}$in the ordered square ($I \times I$ in the dictionary topology)
(b) $K=\left\{1 / n \mid n \in \mathbb{Z}_{+}\right\}$in the set \mathbb{R} with topology given by the basis $\{(-\infty, a) \mid a \in \mathbb{R}\}$
(c) $B=\left\{\left.x \times \frac{1}{2} \right\rvert\, 0<x<1\right\}$ in the ordered square
6. Let a, b be points in a space Z. A path from a to b is a continuous map $f:[0,1] \rightarrow Z$ such that $f(0)=a$ and $f(1)=b$. Consider the following subspace of \mathbb{R}^{2} :

$$
Z=\{(x, y) \mid x \in \mathbb{Q}, y>0\} \cup\{(x, 0) \mid x \in \mathbb{R}\} .
$$

Let $a=\left(x_{a}, y_{a}\right) \in Z$ and $b=\left(x_{b}, y_{b}\right) \in Z$, where $x_{a}<x_{b}$.
(a) Show that for any path in Z from a to b, its image contains the interval $\left(x_{a}, x_{b}\right) \times\{0\}$.
(b) Given arbitrary points $a, b \in Z$, describe the shortest path in Z from a to b, and write down an expression for its length. (This defines a metric on Z, different from the usual metric in \mathbb{R}^{2}.)

