Exam I Topology (Math 5853) September 27, 2005

1(a) State the axioms for \mathscr{B} to be a basis.

(b) Define the topology \mathscr{T} generated by \mathscr{B} .

(c) Show that if \mathscr{B} is a basis for a topology on X, then the topology generated by \mathscr{B} equals the intersection of all topologies on X that contain \mathscr{B} .

2(a) Recall the definition of A + B for ordered sets A and B: a < b for all $a \in A$ and $b \in B$, and the orderings within A and B are unchanged. Each of the following sets is given the dictionary order. Identify the order type of each one as \mathbb{Z}_+ or $\mathbb{Z}_+ + \mathbb{Z}_+$ or $\mathbb{Z}_+ + \mathbb{Z}_+$, etc.

(i) {0,1} × {0,1} × Z₊
(ii) {0,1} × Z₊ × {0,1}
(iii) Z₊ × {0,1} × {0,1}
(b) Show that Z₊ × Z₊ × Z₊ × ··· in the dictionary order is not well-ordered.

3. Let X be an infinite set.

- (a) Show that there is an injective map $f : \mathbb{Z}_+ \to X$.
- (b) Show that for any $n \in \mathbb{Z}_+$, there is a bijection between X and X with n points removed.

4. Let X be a well-ordered set.

(a) Define the least upper bound property and the greatest lower bound property.

(b) Show that X has the least upper bound property.

(c) Show that X has the greatest lower bound property.

5. Consider the two injective maps $\mathbb{Z}_+ \to \mathbb{Z}_+$ given by f(x) = x + 2 and g(x) = x + 3. The proof of the Schroeder–Bernstein Theorem constructs a bijection $\mathbb{Z}_+ \to \mathbb{Z}_+$ based on f and g.

(a) Describe the *orbits* of the construction in this example. How many are there? (It may help to draw a picture.)

(b) Write down the bijection that the construction gives.

6(a) Show that $\mathscr{B} = \{(a, b) \mid a < b, a \text{ and } b \text{ rational}\}$ is a basis for the standard topology on \mathbb{R} . **(b)** Recall that the lower limit topology has basis $\mathscr{B}_{\ell} = \{[a, b) \mid a < b\}$. Show that the basis $\mathscr{B}' = \{[a, b) \mid a < b\}$, and b rational generates a topology different from the lower limit topology.