1. Let $f(x,y) = y^2 \cos(x) + 4(x^3 + 1)y$. Use linear approximation (or a tangent plane) at an appropriate point (a,b) to estimate f(0.02,2.01).

• What is the appropriate point (a, b)?

• What is the linear approximation or tangent plane (your choice) at that point?

• Estimate f(0.02, 2.01).

Use
$$(a,b) = (0,2)$$
 Not, $f(0,2) = 12$.

Now, need $f_{x}(0,2)$ and $f_{y}(0,2)$.

$$f_{x}(x,y) = -y^{2}\sin x + 12x^{2}y , f_{x}(0,2) = 0$$

$$f_{y}(x,y) = 2y \cos x + 4(x^{2}+1), f_{y}(0,2) = 8$$

Linearjation at $(0,2)$ is

$$L(x,y) = 0(x^{2}-0) + 8(y^{2}-2) + 12$$

$$L(x,y) = 8y^{2}-4$$

(tanget place: $z = 8y^{2}-4$)

$$f(0.02, 2.01) \approx L(0.02, 2.01)$$

$$= 8(2.01) - 4$$

$$= 16.08 - 4$$

$$= (12.08)$$

2(a) Write down an integral which computes the length of the curve $\mathbf{r}(t) = \langle \sin t, \cos t, \tan t \rangle$, $0 \le t \le \pi/4$. [Do not compute the integral or proceed any further.]

$$\vec{r}'(t) = \angle \cos t, -\sin t, \sec^2 t$$

$$|\vec{r}'(t)| = \int \cos^2 t + \sin^2 t + \sec^4 t = \int 1 + \sec^4 t$$
and length is $\int \int 1 + \sec^4 t \, dt$

2(b) The function $f(x,y) = 2 + x^3 + y^3 - 3xy$ has critical points at (1,1) and (0,0). What does the second derivatives test allow you to conclude about f at these points?

$$f_{x}(x,y) = 3x^{2} - 3y$$
, $f_{y}(x,y) = 3y^{2} - 3x$
 $f_{xx}(x,y) = 6x$
 $f_{xy}(x,y) = 6y$
 $f_{xy}(x,y) = -3$

$$D = f_{xx}f_{yy} - (f_{xy})^2 = 36xy - 9$$

$$SO = A + (0,0), \quad D = -9, \quad f_{xx} = 0$$

$$L_3(f_{trap} = sndd(e_{trap} = f_{trap} = f_{t$$

3(a) Suppose we want to find the point on the surface $x^2yz^3 = 4$ that is closest to the origin. Use Lagrange multipliers to write down a system of equations whose solution will include this point. [Do not solve the system or proceed any further.]

Let
$$f(x,y,z) = \text{Squared distance to origin} = x^2 + y^2 + z^2$$
,

Constraint: $x^2 y^2 = 4$
 $g(x,y,z)$
 $\nabla f = \langle 2x, 2y, 2z \rangle$, $\nabla g = \langle 2xy^2, x^2z^3, 3x^2y^2\rangle$

System:

$$2x = \lambda \cdot 2xy^2 \quad \text{in the variables}$$

$$2y = \lambda \cdot x^2z^3 \quad \text{x, y, z, }\lambda$$

$$2z = \lambda \cdot 3x^2y^2 \quad \text{x, y, z, }\lambda$$

$$2z = \lambda \cdot 3x^2y^2 \quad \text{x, y, z, }\lambda$$

3(b) Let $f(x,y) = e^{xy}$. Evaluate $\frac{\partial f}{\partial t}$ at (s,t,u) = (2,-1,3) where x = tu and y = t - s. State carefully the version of the Chain Rule that you use.

Start Chair Pule:

$$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t}$$
We have
$$\frac{\partial f}{\partial x} = ye^{xy}, \quad \frac{\partial f}{\partial y} = xe^{xy}$$

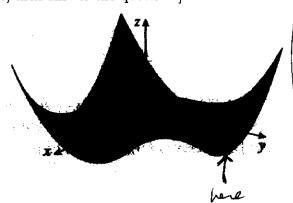
$$\frac{\partial x}{\partial t} = ii, \quad \frac{\partial y}{\partial t} = 1$$
when
$$(5, t, n) = (2, -1, 3), \quad x = -3 \text{ and } y = -3$$

$$\frac{\partial f}{\partial t} = (-3)e^{(-3x-3)} \cdot 3 + (-3)e^{(-3x-3)} \cdot 1$$

$$= [-12e^{9}]$$

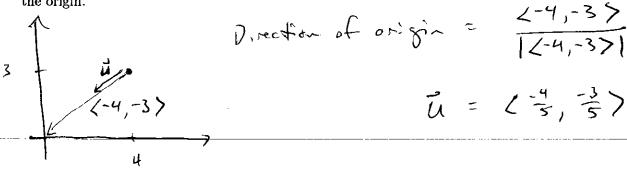
4(a) For the function whose graph is shown below, determine whether each of the following derivatives is positive, negative, or zero: $f_x(0,9)$, $f_y(0,9)$, $f_{xx}(0,9)$, $f_{yy}(0,9)$, $f_{xy}(0,9)$. The scale in the picture is such that the spacing between the curves represents one unit. [Locate the relevant point

first, then answer the question.



$$f_{\chi}(0,9) = 0$$
 (slope in χ .dir.)
 $f_{\chi}(0,9) < 0$ (slope in γ -dir.)
 $f_{\chi\chi}(0,9) > 0$ (concavity)
 $f_{\chi\gamma}(0,9) < 0$ (concavity)
 $f_{\chi\gamma}(0,9) = 0$ (f_{χ} remains 0 as you more in γ -dir.)

4(b) Let $f(x,y) = 2xy - y^2$. Find the directional derivative of f(x,y) at (4,3) in the direction of the origin.



Next,
$$\nabla f = \langle 2\gamma, 2\chi - 2\gamma \rangle$$
, so $\nabla f(4,3) = \langle 6,2 \rangle$.
 $D_{ij}f(4,3) = \nabla f(4,3)$. $U = \langle 6,2 \rangle \cdot \langle -\frac{4}{5}, -\frac{3}{5} \rangle$
 $= -\frac{24}{5} + \frac{-6}{5} = -\frac{30}{5} = -6$