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1. Let f(z,y) = y®cos(z) + 4(z® + 1)y. Use linear approximation (or a tangent plane) at an
appropriate point (a,b) to estimate £(0.02,2.01).

e What is the appropriate point (a,b)?

e What is the linear approximation or tangent plane (your choice) at that point?

e Estimate f(0.02,2.01).
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2(a) Write down an integral which computes the length of the curve r(t) = (sint,cost,tant),
0 <t < /4. [Do not compute the integral or proceed any further.
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2(b) The function f(z,y) = 2+ 2>+ y® — 3zy has critical points at (1,1) and (0,0). What does
the second derivatives test allow you to conclude about f at these points?
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3(a) Suppose we want to find the point on the surface z2y23 = 4 that is closest to the origin. Use
Lagrange multipliers to write down a system of equations whose solution will include this point.
[Do not solve the system or proceed any further.]
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3(b) Let f(z,y) = e*¥. Evaluate % at (s,t,u) = (2,—1,3) where z = tu and y = ¢ — s. State
carefully the version of the Chain Rule that you use.
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4(a) For the function whose graph is shown below, determine whether each of the following deriva-
tives is positive, negative, or zero: fz(0,9), f4(0,9), fz<(0,9), f4y(0,9), fz4(0,9). The scale in the
picture is such that the spacing between the curves represents one unit. [Locate the relevant point

first, then answer the question.]

4(b) Let f(z,y) = 2zy — y2. Find the directional derivative of f(z,y) at (4, 3) in the direction of
the origin.
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