Exam I
Math 2443-005
September 21, 2009

Problem 1: \quad Problem 2:
Problem 3: Problem 4:
Total:

1(a) Let $f(x, y)=e^{x y}$. Evaluate $\frac{\partial f}{\partial t}$ at $(s, t, u)=(-1,3,5)$ where $x=s t$ and $y=u-t$. State carefully the version of the Chain Rule that you use.
(b) The figure shows a contour map of $f(x, y)$.
(i) Estimate f_{x} and f_{y} at point A.
(ii) At point B , in which direction does f increase most rapidly?
(iii) At which of A, B, or C is f_{y} smallest?
(iv) At A, is $f_{y x}$ positive, negative, or zero? Explain briefly.

2. Let $f(x, y)=\frac{x^{2}}{y^{2}+1}$. Use linear approximation (or a tangent plane) at an appropriate point (a, b) to estimate $f(4.01,0.98)$.

- What is the appropriate point (a, b) ?
- What is the linear approximation or tangent plane (your choice)?
- Estimate $f(4.01,0.98)$.

Page 3

3. Find the critical points of the function $f(x, y)=\left(x^{2}+y^{2}\right) e^{-x}$. Then analyze them using the Second Derivatives Test. What can you conclude about the behavior of f at these points?

4(a) Find the maximum rate of change of $f(x, y)=x^{2} y+\sqrt{y}$ at the point $(2,1)$. In which direction does it occur?
(b) Find the directional derivative of $g(x, y)=2 \sqrt{x}-y^{2}$ at the point $(1,5)$ in the direction toward the point $(4,1)$.
(c) Find $d u$ if $u=\ln \left(1+s e^{2 t}\right)$.

