Exam III
Math 2433-010
November 23, 2010

Problem 1: \quad Problem 2:

Problem 3: Problem 4:
Problem 5:
Total:

1(a) Find the values of x such that the vectors $\langle 4, x, 4\rangle$ and $\langle 2 x, x, 5\rangle$ are orthogonal.
(b) A parallelepiped has one corner at the origin and three adjacent corners at the points $(2,1,2)$, $(3,3,0)$ and $(1,1,1)$. Find the volume of the parallelepiped.

2(a) Find a power series expansion, centered at 0 , for the function $f(x)=\frac{1}{x+5}$.
(b) What is the radius of convergence of this power series?
(c) What is $f^{(50)}(0)$?
$\mathbf{3 (a)}$ Find two unit vectors that are orthogonal to both $3 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$ and $\mathbf{i}-2 \mathbf{k}$.
(b) A rectangular box has side lengths 1,1 , and 2 . Find the cosine of the angle between the diagonal of the box and the diagonal of the long rectangular face (these diagonals meet at a corner). [Draw a picture!]

Page 4

4(a) Write down the MacLaurin series for e^{x}.
(b) Write down $\frac{e^{x}}{x}$ as an infinite series.
(c) Write down $\int \frac{e^{x}}{x} d x$ as an infinite series.
5. Let \mathbf{u} and \mathbf{v} be the sides of a parallelogram, considered as vectors, with initial point at the same corner.
(a) Express the diagonals of the parallelogram as vectors.
(b) Use properties of the dot product to express the squared-lengths of the diagonals in terms of $|\mathbf{u}|,|\mathbf{v}|$, and $\mathbf{u} \cdot \mathbf{v}$.
(c) Show that if the lengths of the diagonals are equal, then $\mathbf{u} \cdot \mathbf{v}=0$. What does this say about the parallelogram?

