1. Show, using any valid method (accompanied by a brief explanation), that $(p \wedge q) \to r$ and $(p \to r) \wedge (q \to r)$ are not logically equivalent.

p	9	٢	p na	(p∧q)→r	р⇒г	9-5	$(p \rightarrow r) \wedge (q \rightarrow r)$
T	丁	T	T	τ	T	T	Т
T	T	F	T	F	F	F	F
T	F	Τ_	F	T	Τ	T	T
T	F	F	F	T	F	T	F
F	十	Τ	·F	T	Τ	Τ	T
F	Т	F	F	T	T	F	F
F	F	T .	F	T	T.	Τ	T
F	F	F	F	T	T	Τ	T
·	·				į		
					;		
	İ	1 1			1	'	

From the above truth-value table, we see that: if p is true, q and r are false, then $(p \land q) \rightarrow r$ is true, but $(p \rightarrow r) \land (q \rightarrow r)$ is false.

So, $(p \land q) \rightarrow r$ and $(p \rightarrow r) \land (q \rightarrow r)$ are not beginally equivalent.

- 2(a) Translate each of these statements into an English statement that expresses a mathematical fact. The domain in each case consists of all real numbers.
- (i) $\exists x \exists y ((x^2 > y) \land (x < y))$
- (ii) $\forall x ((x \neq 0) \rightarrow \exists y (xy = 1))$
- (i) There is a real number x and a real number y such that: the value of x square is greater than the value of y and x is smaller than y
- (ii) For every real number x, if x is not equal to 0 then there is a real number y such that x times y is equal to 1.

8/8

- **2(b)** Let I(x) be the statement "x has an internet connection" and C(x,y) be the statement "x and y have chatted over the internet," where the domain for the variables x and y consists of all people in the class. Use quantifiers to express each of these statements:
- (i) Someone in the class has an internet connection, but has not chatted with anyone in the class.
- (ii) There are two people in the class who, between them, have chatted with everyone in the class.

(i)
$$\exists x (\exists (x) \land \forall (\neg C(x,y)))$$

$$(((x,y)) \vee (x,x)) \vee ((x,z)))$$

3(a) Suppose the domain of the predicate P(x,y) consists of pairs x and y, where x is 1, 2, or 3, and y is a or b. Write the following propositions using disjunctions and conjunctions (and without quantifiers):

- (i) $\exists y \ P(1,y)$
- (ii) $\forall \mathbf{x} \neg P(x, b)$
- (i) $P(1,a) \vee P(1,b) \vee$

$$(ii) \left(\neg P(1,b) \right) \wedge \left(\neg P(2,b) \right) \wedge \left(\neg P(3,b) \right) \equiv \neg \left(P(1,b) \vee P(2,b) \vee P(3,b) \right)$$

8/8

3(b) Use quantifiers and predicates with two variables to express the statement: "Some student in this class has visited Alaska, but has not visited any other exotic location." Say clearly what the domains for your variables are.

Domain for x: all students in this class.

Domain for y: all exotic locations.

$$P(x,y)$$
: "x has visited y."

The statement is expressed by:

$$\exists x (P(x, Alaska) \land \forall y (y \neq Alaska \rightarrow \neg P(x,y))$$

4. Use the rules of inference (see next page) to show that the premises $\forall x (P(x) \to Q(x))$, $\forall x (Q(x) \to R(x))$, and $\exists x \neg R(x)$ imply the conclusion $\exists x \neg P(x)$. Justify each step.

(1)	$\forall x (P(x) \rightarrow Q(x))$ (Premise)					
2	$\forall x (Q(x) \rightarrow R(x))$ (Premise)					
<u> </u>	$\exists x \neg R(x)$ (Premise)					
(4)	7R(c) for some element c (Existential Instantiation on 3)					
5	$Q(c) \rightarrow R(c)$ for the same c (Universal Instantiation on Q)					
6	$\neg Q(c)$ for the same c (Modus tollens on \oplus and \bigcirc)					
7	$P(c) \rightarrow Q(c)$ for the same c (Universal Instantiation on Q)					
8	7P(c) for the same c (Modus tollens on @ and 19)					
9	: 3x 7P(x) (Existential Generalization on 8) (conclusion)					