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1. (8 points) Consider the lines r = (¢,2t — 8,t+ 1) and r = (1 — 5,4 + 35,12 + 4s).
(a) Find the point at which the lines intersect.
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(b) Find an equation of the plane that contains these lines.
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2. (12 points) This problem concerns the surface with equation 4z2 — 9y? + 422 = 25.

(a) On each of the axes below, draw several trace curves and label them with values of k.
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(b) Draw the surface carefully in three dimensions. Label any intersection points with axes. What
is this surface called?
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3. (8 points) Find parametric equations for the line of intersection of the planes 2r +52+3 =0
andz—3y+z+2=0.
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4. Lei)P, Q, R, and_?’ be points such that P is not on the plane through @, R, and S. Let a = @7)%,
b=0Q5, and c = QP.
(a) (8 points) Give formulas in terms of a, b, and c for:

(i) The area of the parallelogram spanned by a and b.

(ii) The volume of the parallelepiped spanned by a, b, and c.
(iii) The distance from P to the plane through @, R, and S. [Use (i) and (ii).] Explain.
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(b) (4 points) Find the distance from the point (2,1,4) to the plane through the points (1,0,0),
(0,2,0), and (0,0, 3). f aL
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5. (6 points) Find the cosine of the angle between the diagonals of two adjacent faces of a cube.
(The two diagonals are chosen to meet at a point.)
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6. (6 points) Find an equation for the plane consisting of all points that are equidistant from the
points (—4,2,1) and (2,—4, 3). [Hint: draw a picture first!]
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7. (8 points) Let u and v be the sides of a parallelogram, considered as vectors.

(a) Express the diagonals of the parallelogram as vectors.

(b) Use properties of the dot product to show that if u and v have the same length, then the

diagonals are perpendicular.
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(c) Use properties of the dot product to show that if the diagonals have the same length, then the
parallelogram is a rectangle. [Hint: the diagonals have the same squared length.]

| -y
AN

) 1

Ve (YY)
N\
U v -tV +v.v
\
TRy RV Vi ks
Se 2uy = -2 d.V
=) Tu=y =o
=) “uV=o

56‘13&(4 o~ FL:SL.; mv\a& .



