
Homework 14 Solutions

7.8 #2. (a) proper, (b) Type 2, because it has discontinuity at
x = π/2, (c) Type 2, because it has discontinuity at x = −1, (d) Type
1, because the interval of integration is infinite.
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is infinite. We compute∫ 0
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7.8 #24. The integral is improper because the interval of integration
is infinite. We compute∫ ∞
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7.8 #28. The integral is improper because it has infinite discontinu-
ity at x = 3. We compute∫ 3
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= 2.

7.8 #36. The integral is improper because it has infinite discontinuty
at x = π. We compute∫ π
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cscx dx = lim
p−→π−
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[ln |csc p− cot p| − ln(1− 0)]

= ∞, DIVERGENT.

THE END


