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1. Find the absolute maximum and the absolute minimum of the function f(z) =
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2(a) Find the linearization of f(z) = ——— at = 0. Then, estimate ﬁ.
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(b) Let f(z) = 3z% — 2z + 5. What, specifically, does the Mean Value Theorem tell us about this
function over the interval [0, 2]?
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3. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a constant rate of
6 miZ/h.

(a) Let 7 be the raduis of the oil spill and A its area. Draw a picture and write an equation relating
r and A.

(b) Find an equation involving r'(t) and A'(2).

(c) How fast is the radius of the spill increasing when the area is 9 mi2#§? [Don’t forget to include
units in your answer.]
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4. Consider the function f(z) = 3z° — 523.

(a) Does f have any symmetry? (Is it even, or odd, or neither?)

(b) Find the intervals on which f is increasing, and on which f is decreasing.
(c) Find the local maxima and minima of f.

(d) Find the intervals on which the graph of f is concave up, and on which the graph is concave
down.
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5. We want to find the radius and height of the cylinder of largest volume that can be inscribed in
a cone with radius 6 inches and height 10 inches.
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(a) Find a constraint relating r and h. [Hint: use similar triangles.]
(b) Express the volume in terms of one variable, and give the domain of this function.

(c) Use an appropriate method to solve the problem.
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