Week 8 Homework

3.3

6. The graph of the derivative f^{\prime} of a function is shown.

(a) On what intervals is f increasing or decreasing?
(b) At what values of x does f has a local maximum or minimum?
(a) Increasing on $(0,1)$ and $(3,5)$; Decreasing on $(1,3)$ and $(5,6)$.
(b) Local Maxima at $x=1$ and $x=5$ (positive to negative)

Local Minima at $x=3$ (negative to positive)
12. $f(x)=\frac{x}{x^{2}+1}$
(a) Find the intervals on which f is increasing or decreasing.
(b) Find the local maximum and minimum values of f.
(c) Find the intervals of concavity and the inflection points.
(a) $f^{\prime}(x)=\frac{\left(x^{2}+1\right)(1)-x(2 x)}{\left(x^{2}+1\right)^{2}}=-\frac{(x+1)(x-1)}{\left(x^{2}+1\right)^{2}}$.

So f is increasing on $(-1,1)$ and decreasing on $(-\infty,-1)$ and $(1, \infty)$.
(b) $f(-1)=-1 / 2$ is a local minimum (decreasing to increasing), and $f(1)=1 / 2$ is a local maximum (increasing to decreasing).
(c) $f^{\prime \prime}(x)=\frac{2 x\left(x^{2}-3\right)}{\left(x^{2}+1\right)^{3}}$, so \boldsymbol{f} is concave up on $(-\sqrt{3}, 0)$ and $(\sqrt{3}, \infty)$; and concave down on $(-\infty,-\sqrt{3})$ and $(0, \sqrt{3})$. There are inflection points at $(-\sqrt{3},-\sqrt{3} / 4),(0,0)$, and $(\sqrt{3}, \sqrt{3} / 4)$.
22. Sketch the graph of a function that satisfies all of the given conditions:
$f^{\prime}(1)=f^{\prime}(-1)=0$,
$f^{\prime}(x)<0$ if $|x|<1$,
$f^{\prime}(x)>0$ if $1<|x|<2, \quad$ *One possibility is $f^{\prime}(x)=1$ if $|x|>2, \quad$ shown to the right
$f^{\prime \prime}(x)<0$ if $-2<x<0$,

Inflection point $(0,1)$

3.4

4. For the function g whose graph is given, state the following:
(a) $\lim _{x \rightarrow \infty} g(x)=2$
(b) $\lim _{x \rightarrow-\infty} g(x)=-1$
(c) $\lim _{x \rightarrow 0} g(x)=-\infty$
(d) $\lim _{x \rightarrow 2^{-}} g(x)=-\infty$
(e) $\lim _{x \rightarrow 2^{+}} g(x)=\infty$
(f) The equations

$$
x=0, x=2
$$

of the asymptotes

$$
y=-1, y=2
$$

12. Find the limit or show that it does not exist: $\lim _{x \rightarrow-\infty} \frac{4 x^{3}+6 x^{2}-2}{2 x^{3}-4 x+5}$

$$
\lim _{x \rightarrow-\infty} \frac{4 x^{3}+6 x^{2}-2}{2 x^{3}-4 x+5}=\lim _{x \rightarrow-\infty} \frac{\left(4 x^{3}+6 x^{2}-2\right) / x^{3}}{\left(2 x^{3}-4 x+5\right) / x^{3}}=\lim _{x \rightarrow-\infty} \frac{4+6 / x-2 / x^{3}}{2-4 / x^{2}+5 / x^{3}}=\frac{4+0-0}{2-0+0}=2
$$

