Week 7 Homework

3.1

22. Sketch the graph of f by hand and use your sketch to find the absolute and local maximum and minimum of f.

$$
f(x): \cos (t)
$$

$$
-\frac{3 \pi}{2} \leq t \leq \frac{3 \pi}{2}
$$


```
Absolute and local max: \(f(0)=1\)
Absolute and local min: \(f( \pm \pi)=-1\)
```

46. Find the absolute maximum and minimum of f on the given interval.
$f(x)=5+54 x-2 x^{3}$ on $[0,4]$
$f^{\prime}(x)=54-6 x^{2}=6(3+x)(3-x)$. So $f(x)=0$ if and only if $x= \pm 3(-3$ not in interval $)$
$f(0)=5, f(3)=113$, and $f(4)=93$
So $f(3)=113$ is the absolute maximum, $f(0)=5$ is the absolute minimum.
47. Find the absolute maximum and minimum of f on the given interval.
$f(x)=\frac{x}{x^{2}-x+1}$ on $[0,3]$
$f^{\prime}(x)=\frac{\left(x^{2}-x+1\right)+x(2 x-1)}{\left(x^{2}-x+1\right)^{2}}=\frac{(1+x)(1-x)}{\left(x^{2}-x+1\right)^{2}}$. So $f(x)=0$ if and only if $x= \pm 1(-1$ not in interval $)$
$f(0)=0, f(1)=1$, and $f(3)=\frac{3}{7}$
So $f(1)=1$ is the absolute maximum, $f(0)=0$ is the absolute minimum.

3.2

10. Verify that the function satisfies the hypothesis of the Mean Value Theorem on the interval. Then find all numbers c that satisfy the conclusion of the MVT.
$f(x)=x^{3}-3 x+2$ on $[-2,2]$
$f(x)$ is continuous on $[-2,2]$ and differentiable on $(-2,2)$ because polynomials always are!
MVT: $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
$f^{\prime}(c)=3 c^{2}-3$ and $\frac{f(b)-f(a)}{b-a}=\frac{f(2)-f(-2)}{2-(-2)}=\frac{4-0}{4}=1$
Thus, $3 c^{2}=4$, giving $\boldsymbol{c}= \pm \frac{2}{\sqrt{3}}$, both in the interval!
11. Show that the equation has exactly one real root: $2 x-1-\sin x=0$.

Let $f(x)=2 x-1-\sin x$. Since $f(0)=-1<0$ and $f\left(\frac{\pi}{2}\right)=\pi-2>0$, the
Intermediate Value Theorem says that there is a number c in $\left(0, \frac{\pi}{2}\right)$ such that $f(c)=0$.
Thus, the equation has at least one real root.
More than one root? Suppose the equation has distinct real roots a and b with $a<b$. Then $f(a)=f(b)=0$. Since f is continuous and differentiable on (a, b), Rolle's Theorem implies that there is a number r in (a, b) such that $f^{\prime}(r)=0$.
But $f^{\prime}(r)=2-\cos r>0$ since $\cos r \leq 1$. This is contradiction let's us state that \boldsymbol{f} has exactly one root, not two.

