
Week 14/15 Homework         (Answers from Stewart’s Solution Manuel) 
 
 
5.1 
 
 
18. Sketch the region enclosed by the given curves and find its area. 
 
y = x −1 , x − y = 1 .  
 
The curve is a square root function shifted to the right 1 unit intersected with a line of 
slope 1 shifted down 1 unit. 
 
Finding the intersections: x − y = 1    ⇒     y = x −1. These intersect when x −1 = x −1 . 
 
x −1 = x −1    ⇒     x −1= x −1( )2 = x2 − 2x +1    ⇒     x2 − 3x + 2 = 0 . So 

(x − 2)(x −1) = 0 , meaning the curves intersect at 2 and 1.  
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5.2 
 
 
10. Find the volume of the solid bounded by the curves rotated around the given line. 
 

 Bounded by y = x2

4
and x = 2  and y = 0  rotated about the 𝑦-axis. 

 
A cross-section is a washer with inner radius x = 2 y  and outer radius 2, so its area is 

A(y) = π (2)2 − 2 y( )2⎡
⎣⎢

⎤
⎦⎥
= 4π 1− y( ) . 
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26. Find the volume of the solid bounded by the curves rotated around the given line. 
 
 Bounded by y = x4 and x = 0  rotated about the line y = 1  (Uses in-book pictures). 
 
 

V = A(x)dx =
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5.3 
 
 
6. Use the method of shells to find the volume generated by the curve rotated about the 
𝑦 −axis. 
 
Bounded by y = 4x − x2  and y = x . 
 
Finding intersection points: 4x − x2 = x    ⇒     0 = x2 − 3x = x(x − 3) . So the functions 
intersect at 0 and 3. 
 

Thus, V = 2π x
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30. Describe the solid described by the function 2π y
1− y2
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∫  dy , so the solid is obtained by rotating the region 

0 ≤ x ≤ 1
1− y2

 from 0 ≤ y ≤ 2  about the 𝒙−axis using cylindrical shells. 


