Week 14/15 Homework

5.1

18. Sketch the region enclosed by the given curves and find its area.
$y=\sqrt{x-1}, x-y=1$.
The curve is a square root function shifted to the right 1 unit intersected with a line of slope 1 shifted down 1 unit.

Finding the intersections: $x-y=1 \Rightarrow y=x-1$. These intersect when $\sqrt{x-1}=x-1$.
$\sqrt{x-1}=x-1 \quad \Rightarrow \quad x-1=(x-1)^{2}=x^{2}-2 x+1 \quad \Rightarrow \quad x^{2}-3 x+2=0$. So $(x-2)(x-1)=0$, meaning the curves intersect at 2 and 1 .

Thus, $A=\int_{1}^{2}[\sqrt{x-1}-(x-1)] d x=\left.\left[\frac{2}{3}(x-1)^{3 / 2}-\frac{1}{2}(x-1)^{2}\right]\right|_{1} ^{2}=$ $\frac{2}{3}(1)^{3 / 2}-\frac{1}{2}(1)^{2}-\frac{2}{3}(0)^{3 / 2}+\frac{1}{2}(0)^{2}=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}$

5.2

10. Find the volume of the solid bounded by the curves rotated around the given line.

Bounded by $y=\frac{x^{2}}{4}$ and $x=2$ and $y=0$ rotated about the y-axis.

A cross-section is a washer with inner radius $x=2 \sqrt{y}$ and outer radius 2 , so its area is $A(y)=\pi\left[(2)^{2}-(2 \sqrt{y})^{2}\right]=4 \pi(1-y)$.

Thus, $V=\int_{0}^{1} A(y) d y=4 \pi \int_{0}^{1}(1-y) d y=\left.4 \pi\left[y-\frac{y^{2}}{2}\right]\right|_{0} ^{1}=4 \pi\left((1)^{2}-\frac{(1)^{2}}{2}\right)=4 \pi\left(\frac{1}{2}\right)=2 \pi$
26. Find the volume of the solid bounded by the curves rotated around the given line.

Bounded by $y=\sqrt[4]{x}$ and $x=0$ rotated about the line $y=1$ (Uses in-book pictures).

$$
\begin{aligned}
& V=\int_{0}^{1} A(x) d x=\int_{0}^{1} \pi(1-\sqrt[4]{x})^{2} d x=\pi \int_{0}^{1}\left(1-2 x^{1 / 4}+x^{1 / 2}\right) d x=\left.\pi\left(x-\frac{8}{5} x^{5 / 4}+\frac{2}{3} x^{3 / 2}\right)\right|_{0} ^{1} \\
& =\pi\left(1-\frac{8}{5}+\frac{2}{3}\right)=\frac{\pi}{15}
\end{aligned}
$$

5.3

6. Use the method of shells to find the volume generated by the curve rotated about the y-axis.

Bounded by $y=4 x-x^{2}$ and $y=x$.

Finding intersection points: $4 x-x^{2}=x \quad \Rightarrow \quad 0=x^{2}-3 x=x(x-3)$. So the functions intersect at 0 and 3 .

Thus, $V=\int_{0}^{3} 2 \pi x\left[\left(4 x-x^{2}\right)-x\right] d x=2 \pi \int_{0}^{3} 3 x^{2}-x^{3} d x=\left.2 \pi\left(x^{3}-\frac{x^{4}}{4}\right)\right|_{0} ^{3}$
$=2 \pi\left((3)^{3}-\frac{(3)^{4}}{4}\right)-2 \pi\left((0)^{3}-\frac{(0)^{4}}{4}\right)=2 \pi\left(27-\frac{81}{4}\right)=\frac{27 \pi}{2}$
30. Describe the solid described by the function $2 \pi \int_{0}^{2} \frac{y}{1-y^{2}} d y$.
$2 \pi \int_{0}^{2} \frac{y}{1-y^{2}} d y=\int_{0}^{2} 2 \pi y\left(\frac{1}{1-y^{2}}\right) d y$, so the solid is obtained by rotating the region
$0 \leq x \leq \frac{1}{1-y^{2}}$ from $0 \leq y \leq 2$ about the \boldsymbol{x}-axis using cylindrical shells.

