Week 10 Homework (Answers from Stewart's Solution Manuel)

<u>2.5</u>

28. Find the derivative of the function $f(x) = \frac{\cos(\pi x)}{\sin(\pi x) + \cos(\pi x)} \quad .$ $f(x) = \frac{\cos(\pi x)}{\sin(\pi x) + \cos(\pi x)} \quad \Rightarrow$ $f'(x) = \frac{(\sin(\pi x) + \cos(\pi x))(-\pi \sin(\pi x)) - \cos(\pi x)(\pi \cos(\pi x) - \pi \sin(\pi x)))}{(\sin(\pi x) + \cos(\pi x))^2} \quad (\sin(\pi x) + \cos(\pi x))^2$ $= \frac{-\pi (\sin^2(\pi x) + \cos^2(\pi x))}{(\sin(\pi x) + \cos(\pi x))^2} \quad = \quad \frac{-\pi}{(\sin(\pi x) + \cos(\pi x))^2}$ $\underline{OR} \quad = \quad \frac{-\pi}{1 + 2\sin(\pi x)\cos(\pi x)}$

<u>2.8</u>

14. At noon, Ship A is 150 km away west of Ship B. Ship A is sailing East at 35 km/h and Ship B is sailing North at 25 km/h. How fast is the distance between the ships changing at 4:00 pm?

If z is the distance between the ships, we need to find dz/dt when t = 4h.

$$z^2 = (150 - x)^2 + y^2$$
. So, at 4 pm, $x = 4(35) = 140$ and $y = 4(25)$, making
 $z = \sqrt{(150 - 140)^2 + 100^2} = \sqrt{10,100} = 10\sqrt{101}$.

Moreover,
$$z^2 = (150 - x)^2 + y^2 \implies 2z\frac{dz}{dt} = -2(150 - x)\frac{dx}{dt} + 2y\frac{dy}{dt}$$

So $\frac{dz}{dt} = \frac{1}{z} \left[(x - 150)\frac{dx}{dt} + y\frac{dy}{dt} \right] = \frac{-10(35) + 100(25)}{10\sqrt{101}} = \frac{215}{\sqrt{101}}.$

Thus, $\frac{dz}{dt} \approx 21.4$ km/h.

<u>3.7</u>

16. A rectangular storage container with an open top is to have a volume of $10 m^3$. The length of its base is twice the width. Material for the base costs \$10 per square meter. Material for the sides costs \$6 per square meter. Find the cost of materials for the cheapest such container.

First, V = lwh, so $10 = (2w)(w)h = 2w^2h \implies h = 5/w^2$.

The cost is $C(w) = 10(2w^2) + 6[2(2wh) + 2(hw)] = 20w^2 + 36wh$. Plugging in our height... $C(w) = 20w^2 + 36w(5/w^2) = 20w^2 + 180/w$. We now just have to minimize this.

 $C'(w) = 40w - 180/w^2 = 0 \implies w = \sqrt[3]{\frac{9}{2}}$ is the critical value (one should check this is a minimum), meaning $C\left(\sqrt[3]{\frac{9}{2}}\right) = 20\left(\sqrt[3]{\frac{9}{2}}\right)^2 + 180/\left(\sqrt[3]{\frac{9}{2}}\right) \approx \163.54 is the cheapest cost.

34. A poster is to have an area of 180 in^2 with 1-inch margins at the bottom and sides and a 2-inch margin at the top. What dimensions will give the largest printed area.

First, xy = 180, so y = 180/x. The printed area is A(x) = (x-2)(y-3)= (x-2)(180/x-3) = 186 - 3x - 360/x. We simply have to maximize this...

 $A'(x) = -3 + 360/x^2 = 0 \implies x^2 = 120 \implies x = 2\sqrt{30}$ (one should check this is a maximum).

And, $y = 180/(2\sqrt{30}) = 90/\sqrt{30}$. The dimensions are $2\sqrt{30}$ in. and $90/\sqrt{30}$ in.

<u>3.9</u>

34. Find f from $f''(x) = 8x^3 + 5$ given that f(1) = 0 and f'(1) = 8. $f''(x) = 8x^3 + 5 \implies f'(x) = 8\left(\frac{x^4}{4}\right) + 5x + C$. So, $f'(x) = 2x^4 + 5x + C$. Given that f'(1) = 8, we can solve for $C \dots f'(1) = 2(1)^4 + 5(1) + C = 8 \implies C = 1$. Thus, $f'(x) = 2x^4 + 5x + 1$. Now for f. $f'(x) = 2x^4 + 5x + 1 \implies f(x) = \frac{2}{5}x^5 + \frac{5}{2}x^2 + x + D$. Given that f(1) = 0, we can solve for D... $f(1) = \frac{2}{5}(1)^5 + \frac{5}{2}(1)^2 + (1) + D = 0 \implies D = -1 - \frac{5}{2} - \frac{2}{5} = -\frac{39}{10}$.

Thus,
$$f(x) = \frac{2}{5}x^5 + \frac{5}{2}x^2 + x - \frac{39}{10}$$
.