Week 10 Homework (Answers from Stewart's Solution Manuel)

2.5

28. Find the derivative of the function $f(x)=\frac{\cos (\pi x)}{\sin (\pi x)+\cos (\pi x)}$.

$$
\begin{aligned}
f(x) & =\frac{\cos (\pi x)}{\sin (\pi x)+\cos (\pi x)} \Rightarrow \\
f^{\prime}(x) & =\frac{(\sin (\pi x)+\cos (\pi x))(-\pi \sin (\pi x))-\cos (\pi x)(\pi \cos (\pi x)-\pi \sin (\pi x))}{(\sin (\pi x)+\cos (\pi x))^{2}} \\
& =\frac{-\pi\left(\sin ^{2}(\pi x)+\cos ^{2}(\pi x)\right)}{(\sin (\pi x)+\cos (\pi x))^{2}}=\frac{-\pi}{(\sin (\pi x)+\cos (\pi x))^{2}}
\end{aligned}
$$

$$
\underline{\mathbf{O R}}=\frac{-\pi}{1+2 \sin (\pi x) \cos (\pi x)}
$$

2.8

14. At noon, Ship A is 150 km away west of Ship B. Ship A is sailing East at $35 \mathrm{~km} / \mathrm{h}$ and Ship B is sailing North at $25 \mathrm{~km} / \mathrm{h}$. How fast is the distance between the ships changing at $4: 00 \mathrm{pm}$?

If z is the distance between the ships, we need to find $d z / d t$ when $t=4 h$.
$z^{2}=(150-x)^{2}+y^{2}$. So, at $4 \mathrm{pm}, x=4(35)=140$ and $y=4(25)$, making $z=\sqrt{(150-140)^{2}+100^{2}}=\sqrt{10,100}=10 \sqrt{101}$.

Moreover, $z^{2}=(150-x)^{2}+y^{2} \Rightarrow 2 z \frac{d z}{d t}=-2(150-x) \frac{d x}{d t}+2 y \frac{d y}{d t}$.
So $\frac{d z}{d t}=\frac{1}{z}\left[(x-150) \frac{d x}{d t}+y \frac{d y}{d t}\right]=\frac{-10(35)+100(25)}{10 \sqrt{101}}=\frac{215}{\sqrt{101}}$.

Thus, $\frac{d z}{d t} \approx 21.4 \mathbf{k m} / \mathbf{h}$.

3.7

16. A rectangular storage container with an open top is to have a volume of $10 \mathrm{~m}^{3}$. The length of its base is twice the width. Material for the base costs $\$ 10$ per square meter. Material for the sides costs $\$ 6$ per square meter. Find the cost of materials for the cheapest such container.

First, $V=l w h$, so $10=(2 w)(w) h=2 w^{2} h \quad \Rightarrow \quad h=5 / w^{2}$.
The cost is $C(w)=10\left(2 w^{2}\right)+6[2(2 w h)+2(h w)]=20 w^{2}+36 w h$. Plugging in our height... $C(w)=20 w^{2}+36 w\left(5 / w^{2}\right)=20 w^{2}+180 / w$. We now just have to minimize this.
$C^{\prime}(w)=40 w-180 / w^{2}=0 \quad \Rightarrow \quad w=\sqrt[3]{\frac{9}{2}}$ is the critical value (one should check this is a minimum), meaning $C\left(\sqrt[3]{\frac{9}{2}}\right)=20\left(\sqrt[3]{\frac{9}{2}}\right)^{2}+180 /\left(\sqrt[3]{\frac{9}{2}}\right) \approx \$ 163.54$ is the cheapest cost.
34. A poster is to have an area of $180 \mathrm{in}^{2}$ with 1-inch margins at the bottom and sides and a 2-inch margin at the top. What dimensions will give the largest printed area.

First, $x y=180$, so $y=180 / x$. The printed area is $A(x)=(x-2)(y-3)$ $=(x-2)(180 / x-3)=186-3 x-360 / x$. We simply have to maximize this...
$A^{\prime}(x)=-3+360 / x^{2}=0 \quad \Rightarrow \quad x^{2}=120 \quad \Rightarrow \quad x=2 \sqrt{30}$ (one should check this is a maximum).

And, $y=180 /(2 \sqrt{30})=90 / \sqrt{30}$. The dimensions are $2 \sqrt{30} \mathrm{in}$. and $90 / \sqrt{30} \mathrm{in}$.

3.9

34. Find f from $f^{\prime \prime}(x)=8 x^{3}+5$ given that $f(1)=0$ and $f^{\prime}(1)=8$.
$f^{\prime \prime}(x)=8 x^{3}+5 \quad \Rightarrow \quad f^{\prime}(x)=8\left(\frac{x^{4}}{4}\right)+5 x+C$. So, $f^{\prime}(x)=2 x^{4}+5 x+C$. Given that $f^{\prime}(1)=8$, we can solve for $C \ldots f^{\prime}(1)=2(1)^{4}+5(1)+C=8 \quad \Rightarrow \quad C=1$. Thus, $f^{\prime}(x)=2 x^{4}+5 x+1$.

Now for $f . f^{\prime}(x)=2 x^{4}+5 x+1 \Rightarrow f(x)=\frac{2}{5} x^{5}+\frac{5}{2} x^{2}+x+D$. Given that $f(1)=0$, we can solve for $D \ldots f(1)=\frac{2}{5}(1)^{5}+\frac{5}{2}(1)^{2}+(1)+D=0 \quad \Rightarrow \quad D=-1-\frac{5}{2}-\frac{2}{5}=-\frac{39}{10}$.

Thus, $f(x)=\frac{2}{5} x^{5}+\frac{5}{2} x^{2}+x-\frac{39}{10}$.

