1. (10 points) Analyze the function $f(x) = \frac{x-1}{x^2}$, by determining its noteworthy features and where they occur, and use this information to sketch a detailed graph of f(x). (What is the domain? Where is it positive/negative? increasing/decreasing? concave up/down? Are there asymptotes?) Provide the coordinates of any interesting points on the curve.

Domain:
$$x \neq 0$$
.

 $positive: x > 1$
 $positive: x$

- 2. (15 points) We wish to solve the equation $\cos x = 2x 3$, or equivalently, f(x) = 0 where $f(x) = \cos x 2x + 3$.
- (a) Use the Intermediate Value Theorem to explain why there is at least one solution. Be sure to check that all requirements of the theorem are met.

$$f(x)$$
 is continuous and $f(-\frac{1}{2}) = \pi + 3 > 0$
and $f(\frac{3\pi}{2}) = -3\pi + 3 < 0$ So the
1VT says that $f(c) = 0$ for some
number a between $-\frac{\pi}{2}$ and $\frac{3\pi}{2}$

(b) Use the Mean Value Theorem to show that the graph of $y = \cos x$ and the line y = 2x - 3 cannot meet in more than one point.

If they meet at 2 points, say at xea and x=b, then cos(b)-cos(a) = s/ope of the line = 2.

The MUT says that the derivative of cos x must be 2 somewhere between a and b. But $\frac{d}{dx}(\cos x) = -\sin x$, and this is always between 1 and -1. So this situation cannot occur.

(c) Now we know that the equation has exactly one solution. Suppose we were to find it using Newton's method. Find a formula for the (n+1)-st approximation x_{n+1} in terms of x_n . (Your formula should be specific to this example.) What would be a good initial guess x_1 ?

$$X_{n+1} = X_n - \frac{f(X_n)}{f'(X_n)}$$

$$X_{n+1} = X_n - \frac{\cos(X_n) - 2X_n + 3}{-\sin(X_n) - 2}$$

- 3. (5 points) The figure below shows the graph y = f(x). Suppose we were to use Newton's method to try to find the roots of f(x). Find x-values a, b, and c, so that:
 - (a) if $x_1 = a$ is the initial guess, the sequence (x_n) converges to the root x = 2
 - (b) if $x_1 = b$ is the initial guess, the sequence goes to infinity
 - (c) if $x_1 = c$ is the initial guess, the method stops and cannot be continued.

Also indicate these points on the graph.

4. (10 points) Calculate each of the following.

(a)
$$\frac{dw}{dz}$$
 if $\tan(z/w) = z + w$ take $\frac{d}{dz}$ of both sides!
 $\sec^2(\frac{2}{W})\left(\frac{W-2}{W^2}\right) = 1 + \frac{dw}{dz}$
 $\sec^2(\frac{2}{W})\left(w-2\frac{dw}{dz}\right) = w^2 + w^2\frac{dw}{dz}$
 $\frac{dw}{dz}\left(w^2 + 2\sec^2(\frac{2}{W})\right) = w \sec^2(\frac{2}{W}) - w^2$
 $\frac{dw}{dz} = \frac{w \sec^2(\frac{2}{W}) - w^2}{w^2 + 2\sec^2(\frac{2}{W})}$

(b) the derivative of $\cos(\cos(\sin(x)))\cos(\sin(\sin(x)))$

$$= \left[-\cos\left(\cos\left(\sin x\right)\right)\sin\left(\sin\left(\sin x\right)\right)\cos\left(\sin x\right)\cos X\right]$$

$$+\sin\left(\cos\left(\sin x\right)\right)\sin\left(\sin x\right)\left(\cos x\right)\cos\left(\sin\left(\sin x\right)\right)$$

(c)
$$h'(x)$$
, if $h(x) = f(1/f(x))$ and $f'(x) = 1/x$

$$h'(x) = \begin{cases} \frac{x}{-1} \\ \frac{x}{-1} \\ \frac{x}{-1} \end{cases} \begin{pmatrix} \frac{x}{-1} \\ \frac{x}{-1} \\ \frac{x}{-1} \end{pmatrix}$$

$$= \begin{cases} \frac{x}{-1} \\ \frac{x}{-1} \\ \frac{x}{-1} \\ \frac{x}{-1} \\ \frac{x}{-1} \end{pmatrix}$$

$$= \begin{cases} \frac{x}{-1} \\ \frac{x}{-1$$

5. (10 points) A poster is to have an area of 180 in² with 1-inch margins at the bottom and sides and a 2-inch margin at the top. What dimensions will give the largest printed area?

Domain: 170. Want to maximize A(l).

$$A'(\ell) = -3 + \frac{360}{\ell^2} = 0$$

$$-3\ell^2 + 360 = 0$$

$$\ell^2 = 120$$

$$\ell = \sqrt{120}$$

Note: if 1 < 5100, then 124120, so 360 72 73 => A'(R) 70. if R75120, then A'(R)<0

First derivatie test => A(1) has abs. ma at 1=120.

6(a) (5 points) Find the absolute maximum and absolute minimum of the function $f(x) = \frac{x^2-4}{x^2+4}$ on the interval [-4,4].

$$2x^3 + 8x - 7x^3 + 8x = 0$$

 $16x = 0 \Rightarrow x = 0$

$$f(0) = -1$$
, $f(-4) = \frac{12}{20}$, $f(4) = \frac{72}{20}$.

[absolute maximum: $\frac{12}{20}$]

absolute minimum: -1]

- **6(b)** (5 points) The graph of the *derivative* of a continuous function f(x) is shown.
- (i) On what intervals is f increasing or decreasing?

(ii) At what values of x does f have a local maximum or minimum?

(iii) On what intervals is f concave upward or downward?

7. (10 points) Find the following limits, and explain your reasoning.

(a)
$$\lim_{x \to \infty} \frac{4x^3 - x + 15}{3x^3 - 4x^2 + 4} = \lim_{X \to \infty} \frac{4 - \frac{X}{X^3} + \frac{15}{X^3}}{3 - \frac{4x^2}{X^3} + \frac{4}{X^3}}$$

$$= \frac{4 - \lim_{X \to \infty} \frac{1}{X^2} + \lim_{X \to \infty} \frac{15}{X^3}}{3 - \lim_{X \to \infty} \frac{4}{X^2} + \lim_{X \to \infty} \frac{15}{X^3}}$$

$$= \frac{4 - \lim_{X \to \infty} \frac{1}{X^2} + \lim_{X \to \infty} \frac{15}{X^3}}{3 - \lim_{X \to \infty} \frac{4}{X^3} + \lim_{X \to \infty} \frac{4}{X^3}}$$

$$= \frac{4 - \lim_{X \to \infty} \frac{4}{X^2} + \lim_{X \to \infty} \frac{4}{X^3}}{3 - \lim_{X \to \infty} \frac{4}{X^3}}$$

$$= \frac{4 - \lim_{X \to \infty} \frac{4}{X^2} + \lim_{X \to \infty} \frac{4}{X^3}}{3 - \lim_{X \to \infty} \frac{4}{X^3}}$$

$$= \frac{4 - \lim_{X \to \infty} \frac{4}{X^2} + \lim_{X \to \infty} \frac{4}{X^3}}{3 - \lim_{X \to \infty} \frac{4}{X^3}}$$

(b)
$$\lim_{x\to 2} \frac{x^2 + x - 6}{x - 2} = \lim_{X\to 2} \frac{(x-1)(x+3)}{x-2}$$

$$= \lim_{X\to 2} \frac{x^2 + x - 6}{x-2} = \lim_{X\to 2} \frac{(x-1)(x+3)}{x-2}$$

$$= \lim_{X\to 2} \frac{x^2 + x - 6}{x-2} = \lim_{X\to 2} \frac{(x-1)(x+3)}{x-2}$$

$$= \lim_{X\to 2} \frac{x^2 + x - 6}{x-2} = \lim_{X\to 2} \frac{(x-1)(x+3)}{x-2}$$

$$= \lim_{X\to 2} \frac{x^2 + x - 6}{x-2} = \lim_{X\to 2} \frac{(x-1)(x+3)}{x-2}$$

(c)
$$\lim_{x\to 0} \frac{\sin 4x}{\sin 6x} = \lim_{\chi\to 0} \frac{\sin 4x}{4\chi} \cdot \frac{6\chi}{\sin 6x} \cdot \frac{4}{6}$$

$$= \left(\lim_{\chi\to 0} \frac{\sin 4x}{4\chi}\right) \left(\lim_{\chi\to 0} \frac{6\chi}{\sin 6\chi}\right) \cdot \frac{4}{6}$$

$$= \left(\lim_{\chi\to 0} \frac{\sin 4x}{4\chi}\right) \left(\lim_{\chi\to 0} \frac{6\chi}{\sin 6\chi}\right) \cdot \frac{4}{6}$$

$$= \left(\lim_{\chi\to 0} \frac{\sin 4x}{4\chi}\right) \left(\lim_{\chi\to 0} \frac{6\chi}{\sin 6\chi}\right) \cdot \frac{4}{6}$$

$$= \left(\lim_{\chi\to 0} \frac{\sin 4x}{4\chi}\right) \left(\lim_{\chi\to 0} \frac{6\chi}{\sin 6\chi}\right) \cdot \frac{4}{6}$$

$$= \left(\lim_{\chi\to 0} \frac{\sin 4x}{4\chi}\right) \left(\lim_{\chi\to 0} \frac{6\chi}{\sin 6\chi}\right) \cdot \frac{4}{6}$$

$$= \left(\lim_{\chi\to 0} \frac{\sin 4x}{4\chi}\right) \left(\lim_{\chi\to 0} \frac{6\chi}{\sin 6\chi}\right) \cdot \frac{4}{6}$$

$$= \left(\lim_{\chi\to 0} \frac{\sin 4x}{4\chi}\right) \left(\lim_{\chi\to 0} \frac{6\chi}{\sin 6\chi}\right) \cdot \frac{4}{6}$$

$$= \left(\lim_{\chi\to 0} \frac{\sin 4x}{4\chi}\right) \left(\lim_{\chi\to 0} \frac{6\chi}{\sin 6\chi}\right) \cdot \frac{4}{6}$$

$$= \left(\lim_{\chi\to 0} \frac{\sin 4x}{4\chi}\right) \left(\lim_{\chi\to 0} \frac{6\chi}{\sin 6\chi}\right) \cdot \frac{4}{6}$$

$$= \left(\lim_{\chi\to 0} \frac{\sin 4x}{4\chi}\right) \left(\lim_{\chi\to 0} \frac{6\chi}{\sin 6\chi}\right) \cdot \frac{4}{6}$$

$$= \left(\lim_{\chi\to 0} \frac{\sin 4x}{4\chi}\right) \left(\lim_{\chi\to 0} \frac{6\chi}{\sin 6\chi}\right) \cdot \frac{4}{6}$$

$$= \left(\lim_{\chi\to 0} \frac{\sin 4x}{4\chi}\right) \left(\lim_{\chi\to 0} \frac{6\chi}{\sin 6\chi}\right) \cdot \frac{4}{6}$$

$$= \left(\lim_{\chi\to 0} \frac{1}{4\chi}\right) \left(\lim_{\chi\to 0} \frac{1}{4\chi}\right) \cdot \frac{4}{6\chi}$$

$$= \left(\lim_{\chi\to 0} \frac{1}{4\chi}\right) \left(\lim_{\chi\to 0} \frac{1}{4\chi}\right) \cdot \frac{4}{6\chi}$$

$$= \left(\lim_{\chi\to 0} \frac{1}{4\chi}\right) \left(\lim_{\chi\to 0} \frac{1}{4\chi}\right) \cdot \frac{4}{6\chi}$$

$$= \left(\lim_{\chi\to 0} \frac{1}{4\chi}\right) \cdot \frac{4}{6\chi}$$

8. (10 points) Solve the following related rates problem. Gravel is being dumped from a conveyor belt at a rate of 30 ft³/min, and its coarseness is such that it forms a pile in the shape of a cone whose base diameter and height are always equal. How fast is the height of the pile increasing when the pile is 10 ft high?

Let
$$h = height$$

then area of base = $\pi(\frac{h}{2})^2$
Volume = $\frac{1}{3}h\pi(\frac{h}{2})^2 = \frac{\pi}{12}h^3$.
Now diff, both sides w.r.t. t :
 $\frac{V'(t)}{\pi} = \frac{\pi}{4}(h(t))^2h'(t)$
Plus in details!
 $30 = \frac{\pi}{4}(100)h'(t)$
 $h'(t) = \frac{120}{100\pi} = \frac{6}{5\pi}ft/min$.

9(a) (6 points) Sketch the graph of a function that satisfies the given conditions.

(i)
$$f(0) = 0$$
, $f'(-2) = f'(1) = f'(9) = 0$,

(ii)
$$\lim_{x\to\infty} f(x) = 0$$
, $\lim_{x\to 6} = -\infty$,

(iii)
$$f'(x) < 0$$
 on $(-\infty, -2)$, $(1, 6)$, and $(9, \infty)$,

(iv)
$$f'(x) > 0$$
 on $(-2, 1)$ and $(6, 9)$,

(v)
$$f''(x) > 0$$
 on $(-\infty, 0)$ and $(12, \infty)$,

(vi)
$$f''(x) < 0$$
 on $(0,6)$ and $(6,12)$

- (b) (4 points) True or false? No explanations are required.
- (i) If f(x) is a polynomial then $\lim_{x\to r} f(x) = f(r)$.
- (ii) If f has an absolute minimum value at c then f'(c) = 0.
- (iii) If f'(x) = g'(x) for $0 \le x \le 1$ then f(x) = g(x) for $0 \le x \le 1$.
- (iv) If c is a critical number of a continuous function f and f''(x) > 0 for all x, then f has an absolute minimum at c.