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1. (10 points) Analyze the function f(z) = %‘21, by determining its noteworthy features and where
they occur, and use this information to sketch a detailed graph of f(z). (What is the domain?
Where is it positive/negative? increasing/decreasing? concave up/down? Are there asymptotes?)
Provide the coordinates of any interesting points on the curve.
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2. (15 points) We wish to solve the equation cosz = 2z — 3, or equivalently, f(x) = 0 where
f(z) = cosx — 2z + 3.

(a) Use the Intermediate Value Theorem to explain why there is at least one solution. Be sure to
check that all requirements of the theorem are met.
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(b) Use the Mean Value Theorem to show that the graph of y = cosz and the line y = 2x — 3
cannot meet in more than one point.
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(c) Now we know that the equation has exactly one solution. Suppose we were to find it using
Newton’s method. Find a formula for the (n + 1)-st approximation %41 in terms of z,. (Your
formula should be specific to this example.) What would be a good initial guess z;?
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3. (5 points) The figure below shows the graph y = f(z). Suppose we were to use Newton’s method
to try to find the roots of f(z). Find z-values a, b, and ¢, so that:

(a) if 21 = a is the initial guess, the sequence (z,) converges to the root z = 2

(b) if z; = b is the initial guess, the sequence goes to infinity

(c) if z1 = ¢ is the initial guess, the method stops and cannot be continued.

Also indicate these points on the graph. ) 7
O = _ﬁ«.hg [)O.A‘l’f Vl"SC 40 DZ ,
e L3 |

h = any -?a;/\'\f’ SV'C'CJL’“‘C”“‘PL -

—

Lo dr +he r“‘\QLCI‘)
C.q. “ M

P




Page 4

4. (10 points) Calculate each of the following,.
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5. (10 points) A poster is to have an area of 180 in? with 1-inch margins at the bottom and sides
and a 2-inch margin at the top. What dimensions will give the largest printed area?
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6(a) (5 points) Find the absolute maximum and absolute minimum of the function f (z) = +2

on the interval [—4, 4]. )
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6(b) (5 points) The graph of the derivative of a continuous function f(x) is shown.

(i) On what intervals is f increasing or decreasing?
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(ii) At what values of z does f have a local maximum or minimum?
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(iii) On what intervals is f concave upward or downward?
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7. (10 points) Find the following limits, and explain your reasoning.
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8. (10 points) Solve the following related rates problem. Gravel is being dumped from a conveyor
belt at a rate of 30 ft3/min, and its coarseness is such that it forms a pile in the shape of a cone
whose base diameter and height are always equal. How fast is the height of the pile increasing when
the pile is 10 ft high?
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9(a) (6 points) Sketch the graph of a function that satisfies the given conditions.
(@) f(0)=0, f'(-2)=f(1)=f(9 =0,

(ii) limg 0 f(z) = 0, lim,_,g = —oo0,

(iii) f'(z) < 0 on (—o0,—2), (1,6), and (9, c0),

(iv) f'(z) > 0 on (—2,1) and (6,9),

(v) f”(z) > 0 on (—o00,0) and (12, co),

(vi) f"(z) < 0 on (0,6) and (6,12)

(b) (4 points) True or false? No explanations are required.

(i) If f(z) is a polynomial then lim,._,, f(z) = f(r). Tree
(ii) If f has an absolute minimum value at ¢ then f'(c) = 0. Felse
(iii) If flz) =g'(x) for 0< z < 1then f(z) =g(z) for 0<z <1. Fealse

(iv) If c is a critical number of a continuous function f and f”(z) > 0 for all z, then f has an

absolute minimum at c.
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