II. Euclidean Space

$\mathbb{R}^n = \{ (x_1, x_2, \ldots, x_n) | x_i \in \mathbb{R} \} \quad \mathbb{R}^1 = \mathbb{R}$

$\mathbb{R}^1 \to \mathbb{R}^2 \not\to \mathbb{R}^3$

For $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$, define

$||x|| = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2} = \left(\sum_{i=1}^{n} x_i^2 \right)^{1/2}$

- This is the norm of x, the distance from x to $(0,0,\ldots,0)$

- We define the distance from x to y by the norm of $||x-y||$

 - In \mathbb{R}^1, $||x|| = (x^2)^{1/2} = |x|$ (the norm generalizes this)

 - $||x-y|| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \cdots + (x_n - y_n)^2} = \left(\sum_{i=1}^{n} (x_i - y_i)^2 \right)^{1/2}$

- \mathbb{R}^n with this choice of the distance function is called n-dimensional Euclidean space.
Let \(f : D \to \mathbb{R}^n \) where \(D \subseteq \mathbb{R}^m \)
\[f(x_0) \]
\[\text{is continuous at } x_0 \text{ when } \forall \varepsilon > 0, \exists \delta > 0, x \in D \text{ and } ||x - x_0|| < \delta \Rightarrow ||f(x) - f(x_0)|| < \varepsilon \]
(Of course \(f \) is cont. if it is cont. at every \(x \in D \))

Text \(f : \mathbb{R} \to \mathbb{R}^2 \) defined by \(f(t) = (\cos(t), \sin(t)) \)

\(f \) is cont.: let \(t_0 \in \mathbb{R} \), let \(\varepsilon > 0 \).
There is a \(\delta_1 > 0 \) so that if \(||t - t_0|| < \delta_1 \), then \(|\cos(t) - \cos(t_0)| < \frac{\varepsilon}{2} \)
(Since \(\cos \) is continuous)

There is a \(\delta_2 > 0 \) so that if \(||t - t_0|| < \delta_2 \), then \(|\sin(t) - \sin(t_0)| < \frac{\varepsilon}{2} \)
(Since \(\sin \) is continuous)

So, if \(||t - t_0|| < \min\{\delta_1, \delta_2\} \), then \(||f(t) - f(t_0)|| = \sqrt{((\cos(t) - \cos(t_0))^2 + (\sin(t) - \sin(t_0))^2)} \)
\[= \sqrt{((\cos(t) - \cos(t_0))^2 + (\sin(t) - \sin(t_0))^2)} \]
\[= \sqrt{\left(\frac{\varepsilon}{2}\right)^2 + \left(\frac{\varepsilon}{2}\right)^2} \]
\[= \frac{\varepsilon}{\sqrt{2}} < \varepsilon. \]

\(g : \mathbb{R} \to \mathbb{R}^2 \) \(g(t) = (g_1(t), g_2(t)) \)
\(x = g_1(t) \)
\(y = g_2(t) \)

Notice that this argument would work for any two continuous functions in the role of \(\cos \) and \(\sin \).

For \(1 \leq k \leq n \), \(P_k : \mathbb{R}^n \to \mathbb{R} \) denotes the projection function defined by \(P_k(x) = k \)
\[P_k((x_1, x_2, \ldots, x_n)) = x_k \]
Let \(f: \mathbb{R}^m \to \mathbb{R}^n \) be a function.

For \(x \in \mathbb{R}^m \), \(f(x) = (f_1(x), f_2(x), \ldots, f_n(x)) \).

Write \(f_k : \mathbb{R}^m \to \mathbb{R} \) for the function \(f_k \circ \).

This is called the \(k \)-th coordinate function of \(f \).

Then, \(f(x) = (f_1(x), f_2(x), \ldots, f_n(x)) \).

An \(f \) from \(f : \mathbb{R}^m \to \mathbb{R}^n \) determines \(n \) coordinate functions \(f_k : \mathbb{R}^m \to \mathbb{R} \).

On the other hand, if we start with \(n \) functions, \(g_1, \ldots, g_n : \mathbb{R}^m \to \mathbb{R} \), we can define a function \(g : \mathbb{R}^m \to \mathbb{R}^n \) by \(g(x) = (g_1(x), g_2(x), \ldots, g_n(x)) \).

Example: \(f : \mathbb{R}^2 \to \mathbb{R}^2 \)

\[f(x, y) = x + iy \]

\[f(z) = z^2 \]

Coordinate functions of \(f \):

\[f_1(x, y) = (x + iy)^2 = x^2 + 2xy + iy \]

\[f_2(x, y) = x^2 - y^2 \] and \(f_2(x, y) = 2xy \)

Homework

So if \(f \)

\[|f(x)-f(x)| = \varepsilon |g(x_0)| \]

in which case

\[|g(x_0)| = |g(x_0) - g(x)| + |g(x) - g(x)| \]

\[= \frac{1}{2} |g(x_0)| + |g(x)| \]

\[|g(x)| = \frac{1}{2} |g(x_0)| \]
\[\pi_k : \mathbb{R}^n \to \mathbb{R} \quad \pi_k((x_1, \ldots, x_n)) = x_k \]

\[f : \mathbb{R}^m \to \mathbb{R}^n \quad f((x_1, \ldots, x_m)) = (\pi_1 \circ f)(x_1, \ldots, x_m), (\pi_2 \circ f)(x_1, \ldots, x_m) \]

\[f_i : \mathbb{R}^m \to \mathbb{R} \]

- Each \(\pi_k \) is continuous (HW)
 - So given \(\varepsilon \), choosing \(\delta = \varepsilon \) should work.

- Consequently, if \(f : \mathbb{R}^m \to \mathbb{R}^n \) is continuous, then each \(\pi_k \circ f \) is a composition of continuous functions (HW)
- Conversely, if each \(\pi_k \) is continuous, then \(f \) is continuous.

Example: \(\mathbb{R} \to \mathbb{R}^2, t \mapsto (\cos t, \sin t) \) is continuous because cosine and sine are continuous.

Open Balls & Open Sets

Definition: Let \(x \) be a point in \(\mathbb{R}^n \), let \(\varepsilon > 0 \)

\[B(x, \varepsilon) = \{ z \in \mathbb{R}^n \mid \| x - z \| < \varepsilon \} \]

This is the open ball with radius \(\varepsilon \) and center \(x \)

Proposition: Let \(W \subseteq \mathbb{R}^n \). Then \(\forall x \in W, \exists \varepsilon > 0, B(x, \varepsilon) \subseteq W \iff W \) is a union of open balls.

Note: Not possible for a closed square

Note: Also not possible if \(W \) is a subset of \(\mathbb{R}^n \).
\[\text{Proof:} \] Suppose \(x \in W \), \(\exists \varepsilon > 0 \), \(B(x, \varepsilon) \subseteq W \)

For each \(x \in W \), choose a specific value \(\varepsilon > 0 \) so that the ball around \(x \) with radius \(\varepsilon \) is contained in \(W \).

We will show that \(W = \bigcup_{x \in W} B(x, \varepsilon) \).

Suppose \(\varepsilon \in W \) and \(\exists \ v \in B(\varepsilon, \varepsilon) \),

\[\therefore \varepsilon \in \bigcup_{x \in W} B(x, \varepsilon) \]

Suppose \(\varepsilon \in \bigcup_{x \in W} B(x, \varepsilon) \),

Then \(\varepsilon \in B(y, \varepsilon) \) for some \(y \in W \).

\[B(y, \varepsilon) = W \therefore \varepsilon \in W \quad \text{(since each } x \in W \text{ is open in } W) \]

Better way: \[W = \bigcup_{x \in W} B(x, \varepsilon) \subseteq \bigcup_{x \in W} B(x, v) \subseteq W \text{(since each } B(x, v) \subseteq W) \]

("\(\Rightarrow\)"") Conversely, suppose \(W \) is a union of open balls, say \(W = \bigcup_{x \in A} B(x, \varepsilon) \).

Let \(x \in W \). Then \(x \in B(x, \varepsilon) \) for some \(x \in A \).

Put \(\delta = \varepsilon - \|x - x_0\| \)

\(\varepsilon > 0 \) since \(x \in B(x, \varepsilon) \) implies \(\|x - x_0\| < \varepsilon \).

Let \(\varepsilon \in W \), then \(\varepsilon \in B(x, \varepsilon) \).

\(\|z - x\| = \|z - x + x - x_0\| \leq \|z - x_0\| + \|x - x_0\| \leq (\varepsilon - 1) + \|x - x_0\| = \varepsilon \)

\[\therefore z \in B(x, \varepsilon) \therefore \varepsilon \in W \]

\[\therefore B(x, \varepsilon) \subseteq W. \]
Define a subset $U \subseteq \mathbb{R}^n$ is called open when $\forall x \in U, \exists \epsilon > 0, B(x, \epsilon) \subset U$ or equivalently, it is a union of open balls $B(x, \epsilon)$. Notice also that $\#(B(x_0, s)) = B(x_0, 2s)$ is the same as saying $\#(B(x_0, s)) = \text{open}$ and $B(x_0, s)$ is also the open ball where $\#(B(x_0, s)) = B(x_0, s)$.

So, $\exists \lim_{x \to x_0, s > 0} \psi_B(x_0, s) = 0$. In the open ball where $\#(B(x, s))

\|a - b \| = \|a - c + c - b\| = \|a - c\| + \|c - b\|$. Note: $\#(B(x_0, s)) = B(x_0, 2s)$ means B(x_0, 2s).
Theorem. \(f: \mathbb{R}^m \rightarrow \mathbb{R}^n \) the following 3 things are equivalent:

1. \(\forall x, \in \mathbb{R}^m \) and \(\forall \varepsilon > 0, \exists S > 0, \text{ s.t. } \|x-x_0\| < S \Rightarrow \|f(x) - f(x_0)\| < \varepsilon \)

2. For every open set \(U \subseteq \mathbb{R}^n \), \(f^{-1}(U) \) is open in \(\mathbb{R}^m \)

3. For every open ball \(B(y, \varepsilon) \) in \(\mathbb{R}^n \), \(f^{-1}(B(y, \varepsilon)) \) is open in \(\mathbb{R}^m \)

Proof:

1. \(\implies \) 2

Assume 1 is true.

Let \(U \) be an open set in \(\mathbb{R}^n \), let \(x \) be an element of \(f^{-1}(U) \), so \(f(x) \in U \)

By 1, \(\exists S > 0 \text{ s.t. } f(B(x, S)) \subseteq B(f(x), \varepsilon) \subseteq U \)

i.e. \(f(B(x, S)) = f^{-1}(B(f(x), \varepsilon)) \subseteq f^{-1}(U) \)

\(\therefore f^{-1}(U) \) is open

2. \(\implies \) 3

Let \(B(y, \varepsilon) \) be an open ball.

\(B(y, \varepsilon) \) is open (since it's a union of 1 open ball), so by 2, \(f^{-1}(U) \) is open.

3. \(\implies \) 1

Assume, 3, let \(x_0 \in \mathbb{R}^m \) and let \(\varepsilon \) be given.

\(f(x_0) \in B(f(x_0), \varepsilon) \), so \(x_0 \in f^{-1}(B(f(x_0), \varepsilon)) \)

By 3 this is open \(\exists S > 0 \text{ s.t. } B(x_0, S) \subseteq f^{-1}(B(f(x_0), \varepsilon)) \)

\(\therefore f(B(x_0, S)) \subseteq B(f(x_0), \varepsilon) \)

If \(\|x-x_0\| < S \), then \(\|f(x) - f(x_0)\| < \varepsilon \). \(\square \)
w is open if $\forall x \in w, \exists \varepsilon > 0,$

$q \subseteq \mathbb{R}$ not open $p_\alpha \not\subseteq p_\alpha + \varepsilon$
contains an irrational, so $p_\alpha \not\subseteq q$
contains a rational $p_\alpha + \varepsilon$

$-R - q$ is also not open for the same reason.

- No open balls fit inside the graph, these points not in w.

but the complement, $\mathbb{R}^2 - \mathcal{S}$ is open.

$f: \mathbb{R}^m \rightarrow \mathbb{R}^n$ is continuous (in the $\varepsilon - \delta$ def.)

$\iff \forall U \text{open in } \mathbb{R}^n, f^{-1}(U) \text{ is open in } \mathbb{R}^m$

Properties of Open Sets in \mathbb{R}^n

1. Let $\mathcal{U}_\mathcal{A}$ be a collection of open sets in \mathbb{R}^n. Then $\bigcup \mathcal{U}_\mathcal{A}$ is open.

 Proof: let $x \in \bigcup \mathcal{U}_\mathcal{A}.$ Then $x \in U_\alpha$ for some $\alpha \in \mathcal{A}$. U_α is open, so $\exists \varepsilon > 0, B(x, \varepsilon) \subseteq U_\alpha \subseteq \bigcup \mathcal{U}_\mathcal{A}$.

2. Let $\mathcal{U}_1, \mathcal{U}_2, \ldots, \mathcal{U}_k$ be a finite collection of open subsets of \mathbb{R}^n. Then $\bigcap \mathcal{U}_i$ is open.

 Proof: let $x \in \bigcap \mathcal{U}_i$. For each $i, x \in \mathcal{U}_i$ and \mathcal{U}_i is open, so $\exists \varepsilon_i$ s.t. $B(x, \varepsilon_i)$ is contained in \mathcal{U}_i.

 Let $\varepsilon = \min \varepsilon_1, \ldots, \varepsilon_k.$ For each $i, \varepsilon \leq \varepsilon_i$ so $B(x, \varepsilon) \subseteq B(x, \varepsilon_i) \subseteq \bigcap \mathcal{U}_i$.

 Note: (2) can fail for infinitely many open sets.

 $\bigcap_{i=1}^\infty (-\frac{1}{i} , \frac{1}{i}) = \emptyset$

 open not open

 Similarly, $\bigcap_{i=1}^\infty B(x, \frac{1}{i}) = \emptyset \times \mathcal{S}$
For all \(x \in \mathbb{R}^n \), \(\mathbb{R}^n - \{x\} \) is open.

Proof: Let \(x \in \mathbb{R}^n - \{x\} \), i.e., \(x \neq x \).

\[||x - \frac{1}{2}x|| > 0, \quad \text{so} \quad B\left(\frac{1}{2}x, \frac{1}{2}||x - x||\right) \subset \mathbb{R}^n - \{x\} \]

(for if not, then it would have to contain \(x \), so \(||x - \frac{1}{2}x|| < \frac{1}{2}||x - x|| \).

\[||x - \frac{1}{2}x|| < c \] for a contradiction.)

Let \(\mathbb{R}^n \) be a finite collection of points in \(\mathbb{R}^n \). Then \(\mathbb{R}^n - \mathbb{K} \) is open.

Proof:

\[\mathbb{R}^n - \mathbb{K} = \mathbb{R}^n - \bigcup_{i=1}^{K} \mathbb{R}^n - \{x_i\} = \bigcap_{i=1}^{K} \mathbb{R}^n - \{x_i\} \quad \text{(De Morgan's law: if } \bigcup_{i=1}^{K} U_i \text{ and } U_j \quad \text{then } U_j - \bigcup_{i=1}^{K} U_i = \bigcap_{i=1}^{K} (U_j - U_i)) \]

This is an intersection of finitely many open sets, so it is open.

Note: Every subset of \(\mathbb{R}^n \) is an intersection of some collection of open sets.

Proof: Let \(A \subseteq \mathbb{R}^n \). \(\mathbb{R}^n - \mathbb{A} \) is open (the collection of open sets is \(\{ \mathbb{R}^n - x \} \) if \(x \in \mathbb{R}^n - \mathbb{A} \).)

by De Morgan's law,

\[\mathbb{R}^n - \bigcup_{x \in \mathbb{R}^n - \mathbb{A}} x = \mathbb{R}^n - \mathbb{A} \]

Claim: \(\mathbb{R}^2 - \Gamma \) is open.

Proof: Let \((x, y) \in \mathbb{R}^2 - \Gamma \).

Since \(\sin \) is continuous, there exists \(\delta > 0 \) s.t. if \(||x - x_0|| < \delta \), then \(||\sin(x) - \sin(x_0)|| < \frac{||y_0 - \sin(x_0)||}{2} \).

Radius must be smaller than \(\frac{||y_0 - \sin(x_0)||}{2} \).

Put \(\varepsilon = \min\{ \delta, \frac{||y_0 - \sin(x_0)||}{2} \} \).

Now need to show the ball is in \(\mathbb{R}^2 - \Gamma \) — contradiction.

Suppose \(B(x_0, \varepsilon) \cap \Gamma \neq \emptyset \).

Then \(\exists x \) with \((x, \sin(x)) \in B(x_0, y_0, \varepsilon) \).

\[||x - x_0|| \leq \varepsilon \leq \delta \quad \text{so supposing in ball} \]

\[||\sin(x) - \sin(x_0)|| \leq \frac{||y_0 - \sin(x_0)||}{2} \]
\[\left| y_0 - \sin(x) \right| \leq \left| (x, \sin(x)) - (x_0, y_0) \right| < \varepsilon = \frac{\left| y_0 - \sin(x_0) \right|}{2} \]
\[
\left| y_0 - \sin(x_0) \right| \leq \left| y_0 - \sin(x) \right| + \left| \sin(x) - \sin(x_0) \right| < \frac{\left| y_0 - \sin(x_0) \right|}{2} + \frac{\left| y_0 - \sin(x_0) \right|}{2} = \left| y_0 - \sin(x_0) \right| = \frac{\left| y_0 - \sin(x_0) \right|}{2}.
\]

Contradiction: The number is less than itself.

\[\therefore B((x_0, y_0), \varepsilon) \subseteq \mathbb{R}^2 - \Gamma \]

Define \(F : \mathbb{R}^2 \to \mathbb{R} \) by \(F(x,y) = y - \sin(x) \leq \text{continuous} \)

\[F(x,y) = 0 \iff y = \sin(x) \iff (x,y) \in \Gamma \]

so \(\Gamma = F^{-1}(\{0\}) \), so \(\mathbb{R}^2 - \Gamma = F^{-1}(\mathbb{R} - \{0\}) \) open.

Note: Can generalize both of these to show the graph of any continuous function \(f : \mathbb{R} \to \mathbb{R} \) is \(\text{0-cont.} \)

\(\text{If } g : X \to Y \text{ is a function, } X \times Y \text{ is the set of ordered pairs where } \{ (x,y) \mid x \in X, y \in Y \} \)

The graph of \(g \) is \(\Gamma_g = \{ (x, g(x)) \mid x \in X \} \)

Prop: \(\text{If } g \text{ is a continuous function between topological spaces, then } X \times Y - \Gamma_g \text{ is always an open set} \)

\(\text{Let: generalizes to prove this, but } \square \text{ doesn't because } x - g(x) \text{ doesn't make sense unless } Y \text{ has a subtraction operation} \)

\(\text{?; if } f : \mathbb{R} \to \mathbb{R} \text{ and } \mathbb{R}^2 - \Gamma \text{ is open, must } f \text{ be cont.?} \)
motivation for def of Top. Space: (Basic Ideas)
continuity for maps $f: \mathbb{R}^m \to \mathbb{R}^n$
\[\varepsilon \to \delta \text{ definition} \]

reformed to minimize the role of distance (by thinking about sets instead of distances)
For $x \in \mathbb{R}^k$, define $B(x, \varepsilon) = \{ z \in \mathbb{R}^k : \| z - x \| \leq \varepsilon \}$

define $U \subseteq \mathbb{R}^k$ to be open if...
(equivalently, U is open when U is a union of open balls)
f satisfies the $\varepsilon-\delta$ def. $\iff \forall U$ open in \mathbb{R}^n,
$f^{-1}(U)$ is open in \mathbb{R}^m

Properties of Open Sets in \mathbb{R}^n: \iff General def. of the open sets of a space
f is cont. when $\forall U \text{ open}$, $f^{-1}(U)$ is open

General def. of cont. of $f: X \to Y$

Open set in \mathbb{R}^n is a "basis" of sets that generate the topology
- every open set is a union of basic open sets

Standard Topology on \mathbb{R}^n derives from the topology on \mathbb{R}
- a basis is $\{ (a, b) \times (a_2, b_2) \times \cdots \times (a_n, b_n) \}$

rectangles on \mathbb{R}^n

Properties of distance in \mathbb{R}^n: "product topology" on $X \times Y$ when X and Y have topologies

General concept of a metric d (HW 10)

gives a metric topology—but not all topologies come from metrics