Instructions: Give brief, clear answers.
I. Let M be a manifold with boundary. What is a collar of ∂M ? Draw a picture of a Möbius band, showing
(6) a collar on its boundary.
II. Let X be obtained from a disk by attaching two untwisted 1-handles whose ends alternate in the boundary
(5) of the disk. Draw a picture of X imbedded in a torus.
III. Prove that every contractible space is path-connected.
IV. A compact connected 2-manifold is shown at the
(20) right. It has a handle structure with two 0-handles and four 1-handles.

1. Use Euler characteristic and orientability to determine the homeomorphism type of this 2-manifold.

2. Determine the homeomorphism type directly by using handle slides to simplify this handle structure into a standard form.
V. Let $f: S^{1} \rightarrow S^{1}$ be the homeomorphism sending θ to $\theta+\pi$. Construct an explicit isotopy from $i d_{S^{1}}$ to f.
VI. Let $\gamma: I \rightarrow S^{1}$ be the path defined by $\gamma(t)=(\cos (2 \pi t), \sin (2 \pi t))$. Verify that $\gamma *(\gamma * \gamma) \neq(\gamma * \gamma) * \gamma$.
VII. The following is an incorrect proof of the true fact that $\pi_{1}\left(S^{2}, x_{0}\right)$ is the trivial group. Find the error in
(5) it: Let $\alpha: I \rightarrow S^{2}$ be a loop based at x_{0}. Choose a point $x_{1} \in S^{2}$ which is not in the image of α. Since $S^{2}-\left\{x_{1}\right\}$ is homeomorphic to \mathbb{R}^{2}, and any two loops based at the same point in \mathbb{R}^{2} are path-homotopic, α is path-homotopic to the constant path at x_{0}. Therefore $\pi_{1}\left(S^{2}, x_{0}\right)$ is the trivial group.
VIII. Use the facts that $\pi_{1}\left(S^{1}, s_{0}\right) \cong \mathbb{Z}$ and $\pi_{1}\left(D^{2}, s_{0}\right) \cong\{0\}$, together with the functorial properties of the (10) induced homomorphism, to prove that the circle is not a retract of the disk.
IX. Prove or give a counterexample:
(20)
3. A connected sum $M \# M$ can be homeomorphic to M.
4. The property of being contractible is a topological invariant.
5. A (path-connected) space with nontrivial finite fundamental group must be compact.
6. Only finitely many homeomorphism classes of (compact, connected) surfaces can have the same Euler characteristic.
X. Let $j_{0}, j_{1}: X \rightarrow Y$ be imbeddings. Define what it means to say that j_{0} and j_{1} are isotopic. Define what it
(6) means to say that j_{0} and j_{1} are ambiently isotopic.
XI. Let $\langle\alpha\rangle,\langle\beta\rangle \in \pi_{1}\left(X, x_{0}\right)$. Show that the multiplication operation on $\pi_{1}\left(X, x_{0}\right)$ defined by $\langle\alpha\rangle\langle\beta\rangle=\langle\alpha * \beta\rangle$ is (6) well-defined. (You do not need to check continuity of the path homotopy, just describe the path homotopy that verifies well-definedness. A picture might be helpful.)
