Give brief answers, emphasizing the key point without using too much time on unimportant details.
Even in problems where you cannot do one of the part, try to solve later parts of the problem taking the previous parts as known.

In any problem involving fundamental groups or covering maps, it is assumed that all spaces involved are connected, locally path-connected, semilocally simply-connected Hausdorff spaces.

You may freely use the fact that $\chi\left(S^{2} \# g T \# n P \# k D\right)=2-2 g-n-k$.
I. State the Invariance of Domain theorem. Prove that if $j: S \rightarrow \mathbb{R}^{2}$ is an imbedding from a 2-manifold S with empty boundary to \mathbb{R}^{2}, then the image of j is open.

The Invariance of Domain theorem says that if $U \subseteq \mathbb{R}^{n}$ is an open subset, and $f: U \rightarrow \mathbb{R}^{n}$ is a continuous injection, then $f(U)$ is open.
For the second part, for each $x \in S$, choose an open neighborhood U_{x} of x in S with $U_{x} \approx \mathbb{R}^{2}$. The restriction $\left.j\right|_{U_{x}}: U_{x} \rightarrow \mathbb{R}^{2}$ is a continous injection, so $j\left(U_{x}\right)$ is open in \mathbb{R}^{2}. Therefore $j(S)=$ $j\left(\cup_{x \in S} U_{x}\right)=\cup_{x \in S} j\left(U_{x}\right)$ is an open subset of \mathbb{R}^{2}.
II. Let $A \subseteq B \subseteq X$.
(8)

1. Prove that if A is a retract of X, then A is a retract of B.

Let $r: X \rightarrow A$ be a retraction. Then $\left.r\right|_{B}: B \rightarrow A$ and $\left.r\right|_{B}(i(a))=a$ for each $A \in B$, so $\left.r\right|_{B}$ is a retraction.
2. Find an example where A is a deformation retract of X, but A is not a deformation retract of B.

Let $X=D^{2}, B=\partial D^{2}=S^{1}$, and let $A=\left\{x_{0}\right\}$ for some $x_{0} \in B$. Then A is a deformation retraction of X, by a straght-line deformation $F(x, t)=(1-s) x+s x_{0}$. But A is not a deformation retraction of B, since $\pi_{1}(A)=\{1\}$ but $\pi_{1}(B) \cong \mathbb{Z}$.
III. Give an example (with a brief explanation) of two compact, connected surfaces that are homotopy equiv-
(6) alent but not homeomorphic.

Let $F_{1}=D \# D \# D$ and $F_{2}=T \# D$. Both of these have a one-point union $S^{1} \vee S^{1}$ as a deformation retract (for F_{1}, it is just a figure-8 that encloses two of the holes, while for F_{2} it is the boundary of the square when one regards F_{2} as a square with identifications on the boundary and an open disk removed from the interior), so $F_{1} \simeq S^{1} \vee S^{1} \simeq F_{2}$. But F_{1} has three boundary circles and F_{2} has only one boundary circle, so they are not homeomorphic.
IV. All surfaces in this problem are assumed to be compact and connected. As usual, $\chi(F)$ means the Euler (10) characteristic of F.

1. Let F be a compact, connected surface. Recall that when one removes the interior of a 2 -disk admissibly imbedded in F, the resulting manifold is $F \# D$. Use the Classification Theorem to verify that $\chi(F \# D)=$ $\chi(F)-1$.

If $F=S^{2} \# g T \# n P \# \ell D$, then $\chi(F)=2-2 g-n-\ell$, while $\chi(F \# D)=2-2 g-n-(\ell+1)=\chi(F)-1$.
2. Let F_{1} and F_{2} be two surfaces, and let F be a connected surface obtained by identifying a boundary circle of F_{1} with a boundary circle of F_{2} (for example, when one identifies the boundaries of two disks, one obtains a 2 -sphere). Use the Classification Theorem to verify that $\chi(F)=\chi\left(F_{1}\right)+\chi\left(F_{2}\right)$.

Notice that the number of boundary circles of F is 2 less than the sum of the numbers of boundary circles of F_{1} and F_{2}. So if $F_{i}=S^{2} \# g_{i} T \# n_{i} P \# \ell_{i} D$, we have $F=F_{1} \cup F_{2}=S^{2} \#\left(g_{1}+\right.$ $\left.g_{2}\right) T \#\left(n_{1}+n_{2}\right) P \#\left(\ell_{1}+\ell_{2}-2\right) D$, so $\chi\left(F_{1}\right)+\chi\left(F_{2}\right)=\left(2-2 g_{1}-n_{1}-\ell_{1}\right)+\left(2-2 g_{1}-n_{1}-\ell_{1}\right)=$ $4-2\left(g_{1}+g_{2}\right)-\left(n_{1}+n_{2}\right)-\left(\ell_{1}+\ell_{2}\right)=2-2\left(g_{1}+g_{2}\right)-\left(n_{1}+n_{2}\right)-\left(\ell_{1}+\ell_{2}-2\right)=\chi(F)$.
3. Put these two items of information together with the fact that $F_{1} \# F_{2}$ is obtained by identifying boundary circles of $F_{1} \# D$ and $F_{2} \# D$ to prove that $\chi\left(F_{1} \# F_{2}\right)=\chi\left(F_{1}\right)+\chi\left(F_{2}\right)-2$.

We have $\chi\left(F_{1} \# F_{2}\right)=\chi\left(\left(F_{1} \# D\right) \cup\left(F_{2} \# D\right)\right)=\chi\left(F_{1} \# D\right)+\chi\left(F_{2} \# D\right)=\chi\left(F_{1}\right)-1+\chi\left(F_{2}\right)-1=$ $\chi\left(F_{1}\right)+\chi\left(F_{2}\right)-2$.
V. Assume the fact that if a map $f: X \rightarrow Y$ is homotopic to a constant map, then it extends to a map (6) $\quad F: C(X) \rightarrow Y$, where $C(X)$ is the cone on X, and X is regarded as a subspace of $C(X)$ by identifying x with $(x, 0)$. Prove that S^{2} is not contractible.

Suppose that $i d_{S^{2}} \simeq c$ for some constant map. By the fact, there exists an extension $F: C\left(S^{2}\right) \rightarrow S^{2}$ with $\left.F\right|_{S^{2}}=i d_{S^{2}}$. But $C\left(S^{2}\right)$ is homeomorphic to D^{3}, with S^{2} corresponding to ∂D^{3} (send $[(x, t)] \in$ $C\left(S^{2}\right)=\left(S^{2} \times I\right) /(x, 1) \sim\left(x^{\prime}, 1\right)$ for all $x, x^{\prime} \in S^{2}$ to $\left.(1-t) x \in D^{3} \subset \mathbb{R}^{3}\right)$, so this violates the No Retraction Theorem.
VI. Let X and Y be spaces, and give the set of continuous functions $\mathcal{C}(X, Y)$ the compact-open topology. Show
(6) that if Y is Hausdorff, then $\mathcal{C}(X, Y)$ is Hausdorff.

Let $f, g \in \mathcal{C}(X, Y)$ with $f \neq g$. Then for some $x_{0} \in X, f(x) \neq g(x)$. Let U and V be disjoint neighborhoods of $f\left(x_{0}\right)$ and $g\left(x_{0}\right)$ in Y. Then $f \in S\left(\left\{x_{0}\right\}, U\right), g \in S\left(\left\{x_{0}\right\}, V\right)$, and $S\left(\left\{x_{0}\right\}, U\right) \cap$ $S\left(\left\{x_{0}\right\}, V\right)$ is empty since no function can take x_{0} into two disjoint subsets of Y.
VII. Give the set of continuous functions $\mathcal{C}(\mathbb{R}, \mathbb{R})$ from \mathbb{R} to \mathbb{R} the compact-open topology. For $n \in \mathbb{N}$, define $f_{n} \in \mathcal{C}(\mathbb{R}, \mathbb{R})$ by $f_{n}(x)=0$ for $x \leq n, f_{n}(x)=x-n$ for $n \leq x \leq n+1$, and $f_{n}(x)=1$ for $n+1 \leq x$. Prove that the sequence $\left\{f_{n}\right\}$ converges to the zero function.

Let $\cap_{i=1}^{n} S\left(C_{i}, U_{i}\right)$ be a basic open set that contains the zero function g. Then $g\left(C_{i}\right)=\{0\} \subset U_{i}$ for each i. Since $\cup_{i=1}^{n} C_{i}$ is compact, it is contained in $[-N, N]$ for some positive integer N. Then if $n \geq N, f_{n}\left(C_{i}\right) \subseteq f_{N}([-N, N])=\{0\} \subset U_{i}$ for each i, so $f_{n} \in \cap_{i=1}^{n} S\left(C_{i}, U_{i}\right)$.
VIII. A covering space E of $B=S^{1} \vee S^{1}$ is shown at the right. As usual, the single arrows cover the circle which corresponds to an element $a \in \pi_{1}\left(B, b_{0}\right)$, and the double arrows cover the other circle, which corresponds to an element $b \in \pi_{1}\left(B, b_{0}\right)$. Write G for $\pi_{1}\left(B, b_{0}\right)$ and H for $p_{\#}\left(\pi_{1}\left(E, e_{0}\right)\right)$.

1. Determine the number n of right cosets of H in G, and find elements g_{1}, \ldots, g_{n} in G such that the cosets are $H g_{1}, \ldots, H g_{n}$.
$p^{-1}\left(b_{0}\right)$ consists of five points, so there are five cosets. The lifts of the five elements $1, a, a^{2}, b$, and b^{2} end at the five different points of $p^{-1}\left(b_{0}\right)$, so the five cosets of H can be written as $H, H a, H a^{2}, H b$, and $H b^{2}$.
2. What is the group of covering transformations for this covering space? Why?

It is the trivial group. No covering transformation can take e_{0} to one of the other four points of $p^{-1}\left(b_{0}\right)$, since each of them is contained in a closed loop projecting to b or to a, but e_{0} is not contained in any such loop, so the only covering transformation is $i d_{E}$.
IX. Let X, Y, and Z be locally compact Hausdorff spaces, and let $C: \mathcal{C}(X, Y) \times \mathcal{C}(Y, Z) \rightarrow \mathcal{C}(X, Z)$ be the (6) composition function defined by $C(f, g)=g \circ f$. Show that if $g \circ f \in S(C, U) \subseteq \mathcal{C}(X, Z)$, then there exists a basic open set W in $\mathcal{C}(X, Y) \times \mathcal{C}(Y, Z)$ such that $(f, g) \in W$ and $C(W) \subseteq S(C, U)$.
$g^{-1}(U)$ is an open subset of Y, and since $g \circ f(C) \subseteq U$, we must have the compact subset $f(C) \subseteq$ $g^{-1}(U)$. Since Y is locally compact Hausdorff, there exists an open set V in Y, with \bar{V} compact, such that $f(C) \subseteq V \subseteq \bar{V} \subseteq g^{-1}(U)$. We have $(f, g) \in S(C, V) \times S(\bar{V}, U)$. Moreover, if $\left(f^{\prime}, g^{\prime}\right) \in S(C, V) \times$ $S(\bar{V}, U)$, then $C\left(f^{\prime}, g^{\prime}\right)(C)=g^{\prime}\left(f^{\prime}(C)\right) \subseteq g^{\prime}(\bar{V}) \subseteq U$. Therefore $C(S(C, V) \times S(\bar{V}, U)) \subseteq S(C, U)$.
X. Let $X=\cup_{i=1}^{\infty} U_{i}$, where each U_{i} is open and each $U_{i} \subseteq U_{i+1}$.
(8)

1. Prove that if $\alpha:(I, \partial I) \rightarrow\left(X, x_{0}\right)$ represents an element of $\pi_{1}\left(X, x_{0}\right)$, then $\alpha(I) \subseteq U_{N}$ for some N.
$\alpha(I)$ is a compact subset of X, contained in the union $\cup_{i=1} U_{i}$, so $\alpha(I) \subseteq U_{i_{1}} \cup \cdots \cup U_{i_{n}}$ for some finite subcollection of the U_{i}. Letting N be the largest of the i_{k}, we have $\alpha(I) \subseteq U_{N}$.
2. Prove that if each U_{i} is simply-connected, then X is simply-connected.

First we show that X is path-connected. Let $x_{0}, x_{1} \in X$. Then $x_{0}, x_{1} \in U_{N}$ for some N (each is in some U_{n}, take the larger n). Since U_{N} is simply connected, it is path-connected. A path in U_{N} from x_{0} to x_{1} is also a path in X from x_{0} to x_{1}.
Now, to show that $\pi_{1}\left(X, x_{0}\right)$ is trivial, let $\langle\alpha\rangle \in \pi_{1}\left(X, x_{0}\right)$. Then $\alpha(I) \subseteq U_{N}$ for some N. Therefore $\alpha=i \circ \alpha^{\prime}$, where $\alpha^{\prime}: I \rightarrow U_{N}$ is obtained from α by restriction of the range. But then, $\langle\alpha\rangle=\left\langle i \circ \alpha^{\prime}\right\rangle=$ $i_{\#}\left(\left\langle\alpha^{\prime}\right\rangle\right)$, where $\left\langle\alpha^{\prime}\right\rangle \in \pi_{1}\left(U_{N}, x_{0}\right)$. Since U_{N} is simply-connected, $\pi_{1}\left(U_{N}, x_{0}\right)=\{1\}$ and therefore $\langle\alpha\rangle=i_{\#}(1)=1$.
XI. State the Lifting Criterion for covering maps.

Let $p:\left(E, e_{0}\right) \rightarrow\left(B, b_{0}\right)$ be a covering map, and let $f:\left(X, x_{0}\right) \rightarrow\left(B, b_{0}\right)$ be continuous. Then there exists a lift $F:\left(X, x_{0}\right) \rightarrow\left(E, e_{0}\right)$ of f (that is, a map such that $p \circ F=f$) if and only if $f_{\#} \pi\left(X, x_{0}\right) \subseteq p_{\#} \pi_{1}\left(E, e_{0}\right)$.
XII. Let $p:\left(E, e_{0}\right) \rightarrow\left(B, b_{0}\right)$ be a covering map. Prove that a loop α in B based at b_{0} lifts to a loop in E at e_{0} (10) if and only if $\langle\alpha\rangle \in p_{\#}\left(\pi_{1}\left(E, e_{0}\right)\right)$.

Let $\widetilde{\alpha}$ be the lift of α starting at e_{0}. If $\widetilde{\alpha}$ is a loop, then $p_{\#}(\langle\widetilde{\alpha}\rangle)=\langle p \circ \widetilde{\alpha}\rangle=\langle\alpha\rangle$, so $\langle\alpha\rangle \in p_{\#}\left(\pi_{1}\left(E, e_{0}\right)\right)$. Conversely, suppose that $\langle\alpha\rangle=p_{\#}(\langle\beta\rangle)=\langle p \circ \beta\rangle$ for some $\langle\beta\rangle \in \pi_{1}\left(E, e_{0}\right.$. Then $\alpha \simeq_{p} p \circ \beta$, so (since β is the unique lift of $p \circ \beta$ starting at $\left.e_{0}\right) \widetilde{\alpha} \simeq_{p} \beta$, and therefore $\widetilde{\alpha}(1)=\beta(1)=e_{0}$.
XIII. Let $p: \widetilde{X} \rightarrow X$ and $q: \widetilde{Y} \rightarrow Y$ be covering maps with \widetilde{X} and \widetilde{Y} simply-connected. Prove that if $f: X \rightarrow Y$
(6) is any map, then there exists a map $F: \widetilde{X} \rightarrow \widetilde{Y}$ such that $q \circ F=f \circ p$.

Choose a basepoint $x_{0} \in \widetilde{X}$, and any point $y_{0} \in \widetilde{Y}$ with $q\left(y_{0}\right)=f \circ q\left(x_{0}\right)$. We have $(f \circ p)_{\#}\left(\pi_{1}\left(\widetilde{X}, x_{0}\right)\right)=$ $(f \circ p)_{\#}(\{1\}) \subseteq q_{\#}\left(\pi_{1}\left(\widetilde{Y}, y_{0}\right)\right)$, so there exists a lift $F:\left(\widetilde{X}, x_{0}\right) \rightarrow\left(\widetilde{Y}, y_{0}\right)$ of $f \circ p$. That is, $q \circ F=f \circ p$.

