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Name (please print)

Give brief answers, emphasizing the key point without using too much time on unimportant details.
Even in problems where you cannot do one of the part, try to solve later parts of the problem taking the

previous parts as known.
In any problem involving fundamental groups or covering maps, it is assumed that all spaces involved are

connected, locally path-connected, semilocally simply-connected Hausdorff spaces.
You may freely use the fact that χ(S2#gT#nP#kD) = 2− 2g − n− k.

I.
(8)

State the Invariance of Domain theorem. Prove that if j : S → R2 is an imbedding from a 2-manifold S
with empty boundary to R2, then the image of j is open.

The Invariance of Domain theorem says that if U ⊆ Rn is an open subset, and f : U → Rn is a
continuous injection, then f(U) is open.

For the second part, for each x ∈ S, choose an open neighborhood Ux of x in S with Ux ≈ R2.
The restriction j|Ux : Ux → R2 is a continous injection, so j(Ux) is open in R2. Therefore j(S) =
j(∪x∈SUx) = ∪x∈S j(Ux) is an open subset of R2.

II.
(8)

Let A ⊆ B ⊆ X.

1. Prove that if A is a retract of X, then A is a retract of B.

Let r : X → A be a retraction. Then r|B : B → A and r|B(i(a)) = a for each A ∈ B, so r|B is a
retraction.

2. Find an example where A is a deformation retract of X, but A is not a deformation retract of B.

Let X = D2, B = ∂D2 = S1, and let A = {x0} for some x0 ∈ B. Then A is a deformation retraction
of X, by a straght-line deformation F (x, t) = (1− s)x + sx0. But A is not a deformation retraction of
B, since π1(A) = {1} but π1(B) ∼= Z.

III.
(6)

Give an example (with a brief explanation) of two compact, connected surfaces that are homotopy equiv-
alent but not homeomorphic.

Let F1 = D#D#D and F2 = T#D. Both of these have a one-point union S1 ∨ S1 as a deformation
retract (for F1, it is just a figure-8 that encloses two of the holes, while for F2 it is the boundary of
the square when one regards F2 as a square with identifications on the boundary and an open disk
removed from the interior), so F1 ' S1 ∨S1 ' F2. But F1 has three boundary circles and F2 has only
one boundary circle, so they are not homeomorphic.

IV.
(10)

All surfaces in this problem are assumed to be compact and connected. As usual, χ(F ) means the Euler
characteristic of F .

1. Let F be a compact, connected surface. Recall that when one removes the interior of a 2-disk admissibly
imbedded in F , the resulting manifold is F # D. Use the Classification Theorem to verify that χ(F # D) =
χ(F )− 1.

If F = S2 # gT # nP # `D, then χ(F ) = 2−2g−n−`, while χ(F # D) = 2−2g−n−(`+1) = χ(F )−1.



Page 2

2. Let F1 and F2 be two surfaces, and let F be a connected surface obtained by identifying a boundary circle
of F1 with a boundary circle of F2 (for example, when one identifies the boundaries of two disks, one obtains
a 2-sphere). Use the Classification Theorem to verify that χ(F ) = χ(F1) + χ(F2).

Notice that the number of boundary circles of F is 2 less than the sum of the numbers of boundary
circles of F1 and F2. So if Fi = S2 # giT # niP # `iD, we have F = F1 ∪ F2 = S2 # (g1 +
g2)T # (n1 + n2)P # (`1 + `2 − 2)D, so χ(F1) + χ(F2) = (2 − 2g1 − n1 − `1) + (2 − 2g1 − n1 − `1) =
4− 2(g1 + g2)− (n1 + n2)− (`1 + `2) = 2− 2(g1 + g2)− (n1 + n2)− (`1 + `2 − 2) = χ(F ).

3. Put these two items of information together with the fact that F1#F2 is obtained by identifying boundary
circles of F1#D and F2#D to prove that χ(F1 # F2) = χ(F1) + χ(F2)− 2.

We have χ(F1#F2) = χ((F1#D) ∪ (F2#D)) = χ(F1#D) + χ(F2#D) = χ(F1) − 1 + χ(F2) − 1 =
χ(F1) + χ(F2)− 2.

V.
(6)

Assume the fact that if a map f : X → Y is homotopic to a constant map, then it extends to a map
F : C(X) → Y , where C(X) is the cone on X, and X is regarded as a subspace of C(X) by identifying x
with (x, 0). Prove that S2 is not contractible.

Suppose that idS2 ' c for some constant map. By the fact, there exists an extension F : C(S2) → S2

with F |S2 = idS2 . But C(S2) is homeomorphic to D3, with S2 corresponding to ∂D3 (send [(x, t)] ∈
C(S2) = (S2 × I)/(x, 1) ∼ (x′, 1) for all x, x′ ∈ S2 to (1 − t)x ∈ D3 ⊂ R3), so this violates the No
Retraction Theorem.

VI.
(6)

Let X and Y be spaces, and give the set of continuous functions C(X, Y ) the compact-open topology. Show
that if Y is Hausdorff, then C(X, Y ) is Hausdorff.

Let f, g ∈ C(X, Y ) with f 6= g. Then for some x0 ∈ X, f(x) 6= g(x). Let U and V be disjoint
neighborhoods of f(x0) and g(x0) in Y . Then f ∈ S({x0}, U), g ∈ S({x0}, V ), and S({x0}, U) ∩
S({x0}, V ) is empty since no function can take x0 into two disjoint subsets of Y .

VII.
(6)

Give the set of continuous functions C(R, R) from R to R the compact-open topology. For n ∈ N, define
fn ∈ C(R, R) by fn(x) = 0 for x ≤ n, fn(x) = x− n for n ≤ x ≤ n + 1, and fn(x) = 1 for n + 1 ≤ x. Prove
that the sequence {fn} converges to the zero function.

Let ∩n
i=1S(Ci, Ui) be a basic open set that contains the zero function g. Then g(Ci) = {0} ⊂ Ui

for each i. Since ∪n
i=1Ci is compact, it is contained in [−N,N ] for some positive integer N . Then if

n ≥ N , fn(Ci) ⊆ fN ([−N,N ]) = {0} ⊂ Ui for each i, so fn ∈ ∩n
i=1S(Ci, Ui).



Page 3 Name (please print)

VIII.
(8)

A covering space E of B = S1∨S1 is shown at the right. As usual, the single arrows
cover the circle which corresponds to an element a ∈ π1(B, b0), and the double
arrows cover the other circle, which corresponds to an element b ∈ π1(B, b0). Write
G for π1(B, b0) and H for p#(π1(E, e0)).

1. Determine the number n of right cosets of H in G, and find elements g1, . . . ,
gn in G such that the cosets are Hg1, . . . , Hgn.

p−1(b0) consists of five points, so there are five cosets. The lifts of the five
elements 1, a, a2, b, and b2 end at the five different points of p−1(b0), so the
five cosets of H can be written as H, Ha, Ha2, Hb, and Hb2.

2. What is the group of covering transformations for this covering space? Why?

It is the trivial group. No covering transformation can take e0 to one of the
other four points of p−1(b0), since each of them is contained in a closed loop
projecting to b or to a, but e0 is not contained in any such loop, so the only
covering transformation is idE .

IX.
(6)

Let X, Y , and Z be locally compact Hausdorff spaces, and let C : C(X, Y ) × C(Y, Z) → C(X, Z) be the
composition function defined by C(f, g) = g ◦ f . Show that if g ◦ f ∈ S(C,U) ⊆ C(X, Z), then there exists
a basic open set W in C(X, Y )× C(Y, Z) such that (f, g) ∈ W and C(W ) ⊆ S(C,U).

g−1(U) is an open subset of Y , and since g ◦ f(C) ⊆ U , we must have the compact subset f(C) ⊆
g−1(U). Since Y is locally compact Hausdorff, there exists an open set V in Y , with V compact, such
that f(C) ⊆ V ⊆ V ⊆ g−1(U). We have (f, g) ∈ S(C, V )× S(V ,U). Moreover, if (f ′, g′) ∈ S(C, V )×
S(V ,U), then C(f ′, g′)(C) = g′(f ′(C)) ⊆ g′(V ) ⊆ U . Therefore C(S(C, V )× S(V ,U)) ⊆ S(C,U).

X.
(8)

Let X = ∪∞i=1Ui, where each Ui is open and each Ui ⊆ Ui+1.

1. Prove that if α : (I, ∂I) → (X, x0) represents an element of π1(X, x0), then α(I) ⊆ UN for some N .

α(I) is a compact subset of X, contained in the union ∪i=1Ui, so α(I) ⊆ Ui1 ∪ · · · ∪ Uin for some finite
subcollection of the Ui. Letting N be the largest of the ik, we have α(I) ⊆ UN .

2. Prove that if each Ui is simply-connected, then X is simply-connected.

First we show that X is path-connected. Let x0, x1 ∈ X. Then x0, x1 ∈ UN for some N (each is in
some Un, take the larger n). Since UN is simply connected, it is path-connected. A path in UN from
x0 to x1 is also a path in X from x0 to x1.

Now, to show that π1(X, x0) is trivial, let 〈α〉 ∈ π1(X, x0). Then α(I) ⊆ UN for some N . Therefore
α = i ◦ α′, where α′ : I → UN is obtained from α by restriction of the range. But then, 〈α〉 = 〈i ◦ α′〉 =
i#(〈α′〉), where 〈α′〉 ∈ π1(UN , x0). Since UN is simply-connected, π1(UN , x0) = {1} and therefore
〈α〉 = i#(1) = 1.

XI.
(5)

State the Lifting Criterion for covering maps.

Let p : (E, e0) → (B, b0) be a covering map, and let f : (X, x0) → (B, b0) be continuous. Then
there exists a lift F : (X, x0) → (E, e0) of f (that is, a map such that p ◦ F = f) if and only if
f#π(X, x0) ⊆ p#π1(E, e0).
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XII.
(10)

Let p : (E, e0) → (B, b0) be a covering map. Prove that a loop α in B based at b0 lifts to a loop in E at e0

if and only if 〈α〉 ∈ p# (π1(E, e0)).

Let α̃ be the lift of α starting at e0. If α̃ is a loop, then p#(〈α̃〉) = 〈p◦α̃〉 = 〈α〉, so 〈α〉 ∈ p# (π1(E, e0)).
Conversely, suppose that 〈α〉 = p#(〈β〉) = 〈p ◦ β〉 for some 〈β〉 ∈ π1(E, e0. Then α 'p p ◦ β, so (since
β is the unique lift of p ◦ β starting at e0) α̃ 'p β, and therefore α̃(1) = β(1) = e0.

XIII.
(6)

Let p : X̃ → X and q : Ỹ → Y be covering maps with X̃ and Ỹ simply-connected. Prove that if f : X → Y
is any map, then there exists a map F : X̃ → Ỹ such that q ◦ F = f ◦ p.

Choose a basepoint x0 ∈ X̃, and any point y0 ∈ Ỹ with q(y0) = f◦q(x0). We have (f◦p)#(π1(X̃, x0)) =
(f ◦p)#({1}) ⊆ q#(π1(Ỹ , y0)), so there exists a lift F : (X̃, x0) → (Ỹ , y0) of f ◦p. That is, q◦F = f ◦p.


