Math 5863 homework solutions

31. (3/22) Denote the automorphism group of a group G by $\operatorname{Aut}(G)$. Determine the following automorphism groups:
32. $\operatorname{Aut}(\mathbb{Z})$. (Consider $\phi(1)$.

The homomorphism property tells us that $\phi(n)=\phi(1+\cdots+1)=n(\phi(1))$, so every value of ϕ is a mulitple of $\phi(1)$. In particular, 1 can be a value of ϕ only when $\phi(1)= \pm 1$. The choice $\phi(1)=1$ gives $\phi(n)=n$ for all n, that is, ϕ is the identity function. The choice $\phi(1)=-1$ gives $\phi(n)=-n$ for all n, that is, ϕ is multiplication by $-1 . \operatorname{So} \operatorname{Aut}(\mathbb{Z})$ is a group with exactly two elements, hence $\operatorname{Aut}(\mathbb{Z}) \cong C_{2}$.
2. C_{n}. (Write C_{n} as $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right\}$. Observe that a homomorphism $\phi: C_{n} \rightarrow$ C_{n} is completely determined by $\phi(\alpha)=\alpha^{m}$. Show that ϕ is injective- hence bijective, since C_{n} is finite - if and only if m and n are relatively prime. Deduce that $\operatorname{Aut}\left(C_{n}\right) \cong\{1 \leq m<n \mid \operatorname{gcd}(m, n)=1\}$ with the operation of multiplication modulo n.)

From the homomorphism property, we have $\phi\left(\alpha^{k}\right)=\phi(\alpha)^{k}$, so ϕ is completely determined by $\phi(\alpha)$. Write $\phi(\alpha)=\alpha^{m}$. Suppose that the greatest common divisor $\operatorname{gcd}(m, n)=d>1$. Then $m \cdot \frac{n}{d}=\frac{m}{d} \cdot n$, so $\phi\left(\alpha^{n / d}\right)=\alpha^{m(n / d)}=$ $\left(\alpha^{n}\right)^{(m / d)}=1$, that is, ϕ has nontrivial kernel and hence is not an automorphism. On the other hand, if $\operatorname{gcd}(m, n)=1$, then $\phi\left(\alpha^{k}\right)=\alpha^{m k}=1$ only when n divides $m k$, which is only when k is a multiple of n, so ϕ is injective. Since C_{n} is finite, any injective function is surjective, so all m relatively prime to n give automorphisms. Notice that if $\phi(\alpha)=\alpha^{m}$ and $\psi(\alpha)=\alpha^{\ell}$, then $\phi \circ \psi(\alpha)=\alpha^{m \ell}$, so composition of these automorphisms corresponds to multiplication of the powers of α that define them. That is, $\operatorname{Aut}\left(C_{n}\right)$ can be described as the group of numbers $1 \leq m<m$ with $\operatorname{gcd}(m, n)=1$, with the operation of multiplication modulo n.
3. Verify that $\operatorname{Aut}\left(C_{12}\right) \cong C_{2} \times C_{2}$.

By the previous observations, $\operatorname{Aut}\left(C_{12}\right)$ can be regarded as the set $\{1,5,7,11\}$ with the operation of multiplication modulo 12 . Since $5^{2} \equiv 7^{2} \equiv 11^{2} \equiv 1$ $\bmod 12$, this is a group of order 4 with three elements of order 2 , so must be $C_{2} \times C_{2}$ (any bijection of $\{1,5,7,11\}$ to $C_{2} \times C_{2}$ that sends $(1,1)$ to 1 defines an isomorphism).
4. $\operatorname{Aut}(\mathbb{Z} \times \mathbb{Z})$ (Regard elements of $\mathbb{Z} \times \mathbb{Z}$ as column vectors $\left[\begin{array}{l}a \\ b\end{array}\right]$. Write $\phi\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=$ $\left(\left[\begin{array}{l}a \\ c\end{array}\right]\right)$ and $\phi\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left(\left[\begin{array}{l}b \\ d\end{array}\right]\right)$, and observe that ϕ equals left multiplication by the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Verify that $\operatorname{Aut}(\mathbb{Z} \times \mathbb{Z})$ is isomorphic to the group $\operatorname{GL}(2, \mathbb{Z})$ of 2×2 matrices with integer entries and determinant ± 1. This generalizes to direct products of any number of copies of \mathbb{Z}, that is, $\operatorname{Aut}\left(\mathbb{Z}^{n}\right) \cong \operatorname{GL}(n, \mathbb{Z})$, but you do not need to work out the details of this.)

Any homomorphism ϕ of $\mathbb{Z} \times \mathbb{Z}$ can be regarded as multiplication by $M=$ $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, as indicated above. If ϕ is an automorphism, then it has an inverse automorphism which is multiplication by an integer matrix $N=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$. Since $M N=I$, the determinants are integers satisfying $(a d-b c) \operatorname{det}\left(M^{-1}\right)=1$, so $a d-b c= \pm 1$. On the other hand, if $\operatorname{det}(M)= \pm 1$, then the inverse matrix $M^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$ has integer entries, and multiplication by M^{-1} is an inverse of multiplication by M, so M is an automorphism. Thus there is a bijection from $\operatorname{Aut}(\mathbb{Z} \times \mathbb{Z})$ to $\mathrm{GL}(2, \mathbb{Z})$. Composition of the automorphisms corresponds to multiplication of the matrices, so it is an isomorphism.
32. $(3 / 8)$ Recall that two elements g_{1} and g_{2} of a group G are said to be conjugate if there exists an element $g \in G$ such that $g g_{1} g^{-1}=g_{2}$. The conjugacy class of g_{1} is the set of all elements of G that are conjugate to g_{1}.

1. Verify that the relation of being conjugate is an equivalence relation.
2. Verify that the conjugacy class of the identity element is the identity element.
3. (3/22) For $n \geq 2$, the dihedral group of order $2 n$ is the group D_{n} consisting of all pairs $\alpha^{i} \beta^{j}$ where i is an integer modulo n and j is an integer modulo 2 , with the multiplication rule that $\alpha^{i} \beta^{j} \alpha^{k} \beta^{\ell}=\alpha^{i+(-1)^{j} k} \beta^{j+\ell}$ (that is, $\beta \alpha^{i} \beta^{-1}=\alpha^{-i}$). Verify the following:
4. Check that the condition $\alpha^{i} \beta^{j} \alpha^{k} \beta^{\ell}=\alpha^{i+(-1)^{j} k} \beta^{j+\ell}$ implies that $\beta \alpha \beta^{-1}=\alpha^{-1}$, and that the condition that $\beta \alpha \beta^{-1}=\alpha^{-1}$ implies that $\alpha^{i} \beta^{j} \alpha^{k} \beta^{\ell}=\alpha^{i+(-1)^{j} k} \beta^{j+\ell}$. Thus, people write $D_{n}=\left\langle\alpha, \beta \mid \alpha^{n}=\beta^{2}=1, \beta \alpha \beta^{-1}=\alpha^{-1}\right\rangle$.

Taking $i=0, j=k=1$, and $\ell=-1$ in the first relation gives $\beta \alpha \beta^{-1}=\alpha^{-1}$. On the other hand, since $\beta^{2}=1$, the equation $\beta \alpha \beta^{-1}=\alpha^{-1}$ implies that $\beta^{j} \alpha \beta^{-j}=\alpha^{(-1) j}$, so we have

$$
\begin{aligned}
& \alpha^{i} \beta^{j} \alpha^{k} \beta^{\ell}=\alpha^{i}\left(\beta^{j} \alpha^{k} \beta^{-j}\right) \beta^{j+\ell}=\alpha^{i}\left(\beta^{j} \alpha \beta^{-j}\right)^{k} \beta^{j+\ell} \\
= & \alpha^{i}\left(\beta^{j} \alpha \beta^{-j}\right)^{k} \beta^{j+\ell}=\alpha^{i}\left(\alpha^{(-1)^{j}}\right)^{k} \beta^{j+\ell}=\alpha^{i+(-1)^{j} k} \beta^{j+\ell}
\end{aligned}
$$

2. D_{n} has $2 n$ elements.

There are n integers modulo n, and two modulo 2 , so there are $2 n$ pairs $\alpha^{i} \beta^{j}$ where i is an integer modulo n and j is an integer modulo 2 .
3. D_{1} is isomorphic to C_{2}.

$$
D_{1}=\{1, \beta\}, \text { with } \beta^{2}=1 .
$$

4. D_{2} is isomorphic to $C_{2} \times C_{2}$.

Since $\alpha \beta \cdot \alpha \beta=\alpha \beta \cdot \alpha \beta^{-1}=\alpha \alpha^{-1}=1, D_{2}=\{1, \alpha, \beta, \alpha \beta\}$ is a group of four elements, three of which have order 2 , so is isomorphic to $C_{2} \times C_{2}$.
5. D_{n} is nonabelian for $n \geq 3$.

If $\beta \alpha=\alpha \beta$, then $\alpha^{-1}=\beta \alpha \beta^{-1}=\alpha$, so $\alpha^{2}=1$ and therefore $n \leq 2$.
6. The powers of α form a subgroup isomorphic to C_{n}.
7. The powers of β form a subgroup isomorphic to C_{2}.
8. Find the conjugacy class of each element of D_{n}.

For α^{k}, we have $\alpha^{i} \beta^{j} \alpha^{k} \beta^{-j} \alpha^{-i}=\alpha^{i} \alpha^{(-1)^{j}} \alpha^{-i}=\alpha^{(-1)^{j} k}$, so the conjugacy class of α^{k} is $\left\{\alpha^{k}, \alpha^{-k}\right\}$. This has two elements except when n is even and $2 k=n$, in which case $\alpha^{k}=\alpha^{-k}$. For $\alpha^{k} \beta$, we have $\alpha^{i} \beta^{j} \alpha^{k} \beta \beta^{-j} \alpha^{-i}=$ $\alpha^{i} \alpha^{(-1)^{j} k} \beta \alpha^{-i}=\alpha^{i} \alpha^{(-1)^{j} k} \beta \alpha^{-i} \beta^{-1} \beta=\alpha^{i} \alpha^{(-1)^{j} k} \alpha^{i} \beta=\alpha^{2 i+(-1)^{j} k} \beta$. If n is odd, then different possibilities for i yield every possible power of α, so the conjugacy class is $\left\{\alpha^{\ell} \beta\right\}$, where ℓ takes on all possible values, that is, $D_{n}-C_{n}$. If n is even, then the conjugation can change the exponent of α by any even number, and the conjugacy classes are $\left\{\alpha^{2 \ell} \beta\right\}$ if k is even and are $\left\{\alpha^{2 \ell+1} \beta\right\}$ if k is odd. In either case, it has $n / 2$ elements.
In summary, for n odd we have one conjugacy class with one element, $\{1\}$, $(n-1) / 2$ conjugacy classes consisting of two elements $\left\{\alpha^{k}, \alpha^{-k}\right\}$, and one conjugacy class $D_{n}-C_{n}$ of n elements. When n is even, there are two conjugacy classes $\{1\}$ and $\left\{\alpha^{n / 2}\right\}$ consisting of one element (note that this corresponds to the fact that $\alpha^{n / 2}$ is a central element), $(n-2) / 2$ conjugacy classes consisting of two elements $\left\{\alpha^{k}, \alpha^{-k}\right\}$, and two conjugacy classes each having $n / 2$ elements, $\left\{\alpha^{2 \ell} \beta\right\}$ and $\left\{\alpha^{2 \ell+1} \beta\right\}$.
34. (3/22) Recall that the group Isom $_{+}\left(\mathbb{R}^{2}\right)$ of orientation-preserving isometries consists of all compositions $T_{v} R_{\alpha}$, for $v \in \mathbb{R}^{2}$ and $\alpha \in S^{1}$ (where we regard S^{1} as the additive group of real numbers modulo 2π), with multiplication given by $T_{v} R_{\alpha} T_{w} R_{\beta}=T_{v+R_{\alpha}(w)} R_{\alpha+\beta}$. Note that the inverse of $T_{v} R_{\alpha}$ is $R_{-\alpha} T_{-v}$, which is also equal to $T_{R_{-\alpha}(-v)} R_{-\alpha}$.

1. Verify that the conjugacy class of $T_{v}(v \neq 0)$ is $\left\{T_{w} \mid\|w\|=\|v\|\right\}$. Describe these elements geometrically.

We calculate that $T_{w} R_{\alpha} \cdot T_{v} \cdot R_{-\alpha} T_{-w}=T_{w} T_{R_{\alpha}(v)} R_{\alpha} R_{-\alpha} T_{-w}=T_{w+R_{\alpha}(v)-w}=$ $T_{R_{\alpha}(v)}$. The possible vectors $R_{\alpha}(v)$ are exactly the vectors of length equal to the length of v. Geometrically, the conjugacy class of T_{v} consists of all the translations that move points the same distance as T_{v} does.
2. Verify that the conjugacy class of $R_{\alpha}(\alpha \neq 0)$ is $\left\{T_{v} R_{\alpha} \mid v \in \mathbb{R}^{2}\right\}$. Show that these elements are exactly the isometries that rotate the plane through an angle α about some fixed point. (Observe that each conjugate can be written in the form $T_{w} R_{\alpha} T_{-w}$, and think about its geometric effect on the plane.)

We calculate that $T_{w} R_{\beta} \cdot R_{\alpha} \cdot R_{-\beta} T_{-w}=T_{w} R_{\alpha} T_{-w}=T_{w} T_{R_{\alpha}(-w)} R_{\alpha}=T_{w+R_{\alpha}(-w)} R_{\alpha}$.
Now, every vector v can be written in the form $w+R_{\alpha}(-w)$ for some w; w and $R_{\alpha}(-w)$ are vectors of equal length meeting at an angle $\pi+\alpha \neq \pi$, so we may select w so that v bisects the angle between w and $R_{\alpha}(-w)$, then adjust the length of w until $w+R_{\alpha}(-w)$ exactly v. So the conjugacy class is all elements of the form $T_{v} R_{\alpha}$.

We calculated that each conjugate $T_{w} R_{\beta} \cdot R_{\alpha} \cdot R_{-\beta} T_{-w}$ equals $T_{w} R_{\alpha} T_{-w}$. Consider the effect of $T_{w} R_{\alpha} T_{-w}$ on the point w. First it is translated to the origin, then R_{α} rotates everything about the origin, then the origin is translated back to w. The composite effect is to rotate through an angle α, but with w in the role of the origin. Conversely, any rotation through an angle α about a fixed point w can be regarded as this conjugate $T_{w} R_{\alpha} T_{-w}$.
35. $(3 / 22)$ Recall that if H is a subgroup of a group G, then $g H g^{-1}$ is the subgroup consisting of all elements ghg^{-1} for $h \in H$, and recall that H is called a normal subgroup if $g \mathrm{Hg}^{-1}=H$ for all $g \in G$.

1. Verify that every subgroup of an abelian group is normal.
2. Verify that the subgroup consisting of the powers of α is a normal subgroup of D_{n}.
3. Verify that the subgroup consisting of the powers of β is a normal subgroup of D_{n} if and only if $n \leq 2$.

For $n \leq 2, D_{n}$ is abelian so every subgroup is normal. If $n \geq 3$, then $\alpha^{2} \neq 1$, so $\alpha \neq \alpha^{-1}$, so $\beta \alpha \beta^{-1} \neq \alpha$, so $\alpha^{-1} \beta \alpha \neq \beta$. Therefore $\alpha^{-1} \beta \alpha \notin\{1, \beta\}$, showing that $\{1, \beta\}$ is not normal.
4. Let T be the subgroup of Isom $_{+}\left(\mathbb{R}^{2}\right)$ consisting of all translations, that is, all elements of the form T_{v}. Verify that T is isomorphic to \mathbb{R}^{2}, and is a normal subgroup of Isom $_{+}\left(\mathbb{R}^{2}\right)$.
5. Let R be the subgroup of $\operatorname{Isom}_{+}\left(\mathbb{R}^{2}\right)$ consisting of all rotations, that is all elements of the form R_{α}. Verify that R is isomorphic to S^{1}, and is not a normal subgroup of $\operatorname{Isom}\left(\mathbb{R}^{2}\right)$.
6. Find a subgroup of $\operatorname{Isom}\left(\mathbb{R}^{2}\right)$ (not $\operatorname{Isom}_{+}\left(\mathbb{R}^{2}\right)$, as you will want to use the isometry $\tau(x, y)=(x,-y))$ that is isomorphic to D_{n}.

Put $\alpha=R_{2 \pi / n}$ and $\beta=\tau$. Then α has order n, β has order 2 , and $\beta \alpha \beta^{-1}=$ $\tau R_{2 \pi / n} \tau=R_{-2 \pi / n}=\alpha^{-1}$. One can check that the elements $\alpha^{i} \beta^{j}$ for $0 \leq i \leq$ $n-1$ and $0 \leq j \leq 1$ are distinct, so α and β produce a subgroup isomorphic to D_{n}.
36. (3/22) Consider the quotient space of the standard 2-sphere S^{2} in \mathbb{R}^{3}, obtained by identifying each x with $-x$.

1. Show that the quotient space is homeomorphic to the real projective plane $P=$ $\mathbb{R P}^{2}$, obtained from a Möbius band and a 2-disk by identifying their boundary circles.

Perhaps the easiest way is to think of first identifying each point below the equator with its corresponding point above the equator, giving just the upper hemipshere which is a disk D^{2}, and then making the remaining identifications on the equator, which amounts to identifying the opposite points on ∂D^{2}; thus the quotient is one of our standard descriptions of $\mathbb{R} \mathbb{P}^{2}$.
2. Let $p: S^{2} \rightarrow P$ be this quotient map. Show (a good picture should be enough) that each $x \in P$ has an open neighborhood U for which $p^{-1}(U)$ consists of two copies of U, each mapped homeomorphically to U by the restriction of p.

For $x \in P$, the preimage is two points \widetilde{x} and $-\widetilde{x}$ in S^{2}. Take D to be a small open disk in S^{2} centered at \widetilde{x}, and let $-D$ be the disk consisting of all $-z$ for $z \in D$. Then the quotient map identifies each point in D with a unique point in $-D$, producing an open disk neighborhood U of x with the desired property. Note that this also verifies that P is a manifold.
3. The previous condition implies that $p: S^{2} \rightarrow P$ satisfies the unique path lifting and unique homotopy lifting theorems, just as with the map $\mathbb{R} \rightarrow S^{1}$ (no need to prove this, the argument is exactly the same). Use these to prove that $\pi_{1}(P) \cong C_{2}$ (the fact that S^{2} is simply-connected, which we proved in class since we proved that $\pi_{1}\left(S^{2}\right)=\{1\}$, is needed in the argument).

Choose as basepoint the equivalence class $x_{0}=\{N, S\}$ of the north and south poles. Any loop α in $\mathbb{R P}^{2}$ based at x_{0} has a unique lift $\widetilde{\alpha}$ starting at N. Define $\Phi: \pi_{1}\left(\mathbb{R}^{2}, x_{0}\right) \rightarrow C_{2}=\{1, \sigma\}$ by $\Phi(\langle\alpha\rangle)=1$ if $\widetilde{\alpha}(1)=N$ (that is, if α lifts to a loop at $N)$ and $\Phi(\langle\alpha\rangle)=\sigma$ if $\widetilde{\alpha}(1)=S$.
We note first that Φ is well-defined, for a path homotopy between α and α^{\prime} lifts to a path homotopy between their lifts, so $\alpha(1)=\alpha^{\prime}(1)$.
To see that Φ is injective, suppose that $\Phi\left(\widetilde{\alpha} \simeq_{p} \widetilde{\alpha^{\prime}}\right.$. Then $\widetilde{\alpha}$ and $\widetilde{\alpha^{\prime}}$ have the same starting point, N, and the same ending point. Since S^{2} is simplyconnected, there exists a path homotopy $F: \widetilde{\alpha} \simeq_{p} \alpha^{\prime}$. Then, $p \circ F: \alpha \simeq_{p} \alpha^{\prime}$, so $\langle\alpha\rangle=\left\langle\alpha^{\prime}\right\rangle$.
Finally, to see that Φ is surjective, $\widetilde{c_{x_{0}}}=c_{N}$, and $c_{N}(1)=N$, so $\Phi\left(\left\langle c_{x_{0}}\right\rangle\right)=$ $1 \in C_{2}$. Now, let γ be any path in S^{2} from N to S, and define $\alpha=p \circ \gamma$. Then, $\widetilde{\alpha}(1)=\gamma(1)=S$, so $\Phi(\langle\alpha\rangle)=\sigma$.

