
Math 5863 homework solutions

31. (3/22) Denote the automorphism group of a group G by Aut(G). Determine the
following automorphism groups:

1. Aut(Z). (Consider φ(1).)

The homomorphism property tells us that φ(n) = φ(1 + · · · + 1) = n(φ(1)),
so every value of φ is a mulitple of φ(1). In particular, 1 can be a value of
φ only when φ(1) = ±1. The choice φ(1) = 1 gives φ(n) = n for all n, that
is, φ is the identity function. The choice φ(1) = −1 gives φ(n) = −n for all
n, that is, φ is multiplication by −1. So Aut(Z) is a group with exactly two
elements, hence Aut(Z) ∼= C2.

2. Cn. (Write Cn as {1, α, α2, . . . , αn−1}. Observe that a homomorphism φ : Cn →
Cn is completely determined by φ(α) = αm. Show that φ is injective– hence bijec-
tive, since Cn is finite— if and only if m and n are relatively prime. Deduce that
Aut(Cn) ∼= {1 ≤ m < n | gcd(m,n) = 1} with the operation of multiplication
modulo n.)

From the homomorphism property, we have φ(αk) = φ(α)k, so φ is completely
determined by φ(α). Write φ(α) = αm. Suppose that the greatest common
divisor gcd(m,n) = d > 1. Then m · n

d
= m

d
· n, so φ(αn/d) = αm(n/d) =

(αn)(m/d) = 1, that is, φ has nontrivial kernel and hence is not an automor-
phism. On the other hand, if gcd(m,n) = 1, then φ(αk) = αmk = 1 only
when n divides mk, which is only when k is a multiple of n, so φ is injec-
tive. Since Cn is finite, any injective function is surjective, so all m relatively
prime to n give automorphisms. Notice that if φ(α) = αm and ψ(α) = α`,
then φ ◦ ψ(α) = αm`, so composition of these automorphisms corresponds to
multiplication of the powers of α that define them. That is, Aut(Cn) can be
described as the group of numbers 1 ≤ m < m with gcd(m,n) = 1, with the
operation of multiplication modulo n.

3. Verify that Aut(C12) ∼= C2 × C2.

By the previous observations, Aut(C12) can be regarded as the set {1, 5, 7, 11}
with the operation of multiplication modulo 12. Since 52 ≡ 72 ≡ 112 ≡ 1
mod 12, this is a group of order 4 with three elements of order 2, so must be
C2×C2 (any bijection of {1, 5, 7, 11} to C2×C2 that sends (1, 1) to 1 defines
an isomorphism).

4. Aut(Z×Z) (Regard elements of Z×Z as column vectors

[
a
b

]
. Write φ

([
1
0

])
=([

a
c

])
and φ

([
0
1

])
=

([
b
d

])
, and observe that φ equals left multiplication by

the matrix

[
a b
c d

]
. Verify that Aut(Z × Z) is isomorphic to the group GL(2,Z)

of 2 × 2 matrices with integer entries and determinant ±1. This generalizes to
direct products of any number of copies of Z, that is, Aut(Zn) ∼= GL(n,Z), but
you do not need to work out the details of this.)



Any homomorphism φ of Z × Z can be regarded as multiplication by M =[
a b
c d

]
, as indicated above. If φ is an automorphism, then it has an inverse au-

tomorphism which is multiplication by an integer matrix N =

[
A B
C D

]
. Since

MN = I, the determinants are integers satisfying (ad− bc) det(M−1) = 1, so
ad − bc = ±1. On the other hand, if det(M) = ±1, then the inverse matrix

M−1 =
1

ad− bc

[
d −b
−c a

]
has integer entries, and multiplication by M−1 is

an inverse of multiplication by M , so M is an automorphism. Thus there is
a bijection from Aut(Z×Z) to GL(2,Z). Composition of the automorphisms
corresponds to multiplication of the matrices, so it is an isomorphism.

32. (3/8) Recall that two elements g1 and g2 of a group G are said to be conjugate if there
exists an element g ∈ G such that gg1g

−1 = g2. The conjugacy class of g1 is the set of
all elements of G that are conjugate to g1.

1. Verify that the relation of being conjugate is an equivalence relation.

2. Verify that the conjugacy class of the identity element is the identity element.

33. (3/22) For n ≥ 2, the dihedral group of order 2n is the group Dn consisting of all
pairs αiβj where i is an integer modulo n and j is an integer modulo 2, with the
multiplication rule that αiβjαkβ` = αi+(−1)jkβj+` (that is, βαiβ−1 = α−i). Verify the
following:

1. Check that the condition αiβjαkβ` = αi+(−1)jkβj+` implies that βαβ−1 = α−1,
and that the condition that βαβ−1 = α−1 implies that αiβjαkβ` = αi+(−1)jkβj+`.
Thus, people write Dn = 〈α, β | αn = β2 = 1, βαβ−1 = α−1〉.

Taking i = 0, j = k = 1, and ` = −1 in the first relation gives βαβ−1 = α−1.
On the other hand, since β2 = 1, the equation βαβ−1 = α−1 implies that
βjαβ−j = α(−1)j, so we have

αiβjαkβ` = αi(βjαkβ−j)βj+` = αi(βjαβ−j)kβj+`

= αi(βjαβ−j)kβj+` = αi(α(−1)j

)kβj+` = αi+(−1)jkβj+`

2. Dn has 2n elements.

There are n integers modulo n, and two modulo 2, so there are 2n pairs αiβj

where i is an integer modulo n and j is an integer modulo 2.

3. D1 is isomorphic to C2.

D1 = {1, β}, with β2 = 1.

4. D2 is isomorphic to C2 × C2.

Since αβ · αβ = αβ · αβ−1 = α α−1 = 1, D2 = {1, α, β, αβ} is a group of four
elements, three of which have order 2, so is isomorphic to C2 × C2.



5. Dn is nonabelian for n ≥ 3.

If βα = αβ, then α−1 = βαβ−1 = α, so α2 = 1 and therefore n ≤ 2.

6. The powers of α form a subgroup isomorphic to Cn.

7. The powers of β form a subgroup isomorphic to C2.

8. Find the conjugacy class of each element of Dn.

For αk, we have αiβjαkβ−jα−i = αiα(−1)jkα−i = α(−1)jk, so the conjugacy
class of αk is {αk, α−k}. This has two elements except when n is even and
2k = n, in which case αk = α−k. For αkβ, we have αiβjαkββ−jα−i =
αiα(−1)jkβα−i = αiα(−1)jkβα−iβ−1β = αiα(−1)jkαiβ = α2i+(−1)jkβ. If n is
odd, then different possibilities for i yield every possible power of α, so the
conjugacy class is {α`β}, where ` takes on all possible values, that is, Dn−Cn.
If n is even, then the conjugation can change the exponent of α by any even
number, and the conjugacy classes are {α2`β} if k is even and are {α2`+1β}
if k is odd. In either case, it has n/2 elements.

In summary, for n odd we have one conjugacy class with one element, {1},
(n − 1)/2 conjugacy classes consisting of two elements {αk, α−k}, and one
conjugacy class Dn − Cn of n elements. When n is even, there are two
conjugacy classes {1} and {αn/2} consisting of one element (note that this
corresponds to the fact that αn/2 is a central element), (n − 2)/2 conjugacy
classes consisting of two elements {αk, α−k}, and two conjugacy classes each
having n/2 elements, {α2`β} and {α2`+1β}.

34. (3/22) Recall that the group Isom+(R2) of orientation-preserving isometries consists of
all compositions TvRα, for v ∈ R2 and α ∈ S1 (where we regard S1 as the additive group
of real numbers modulo 2π), with multiplication given by TvRαTwRβ = Tv+Rα(w)Rα+β.
Note that the inverse of TvRα is R−αT−v, which is also equal to TR−α(−v)R−α.

1. Verify that the conjugacy class of Tv (v 6= 0) is {Tw | ‖w ‖ = ‖ v ‖}. Describe
these elements geometrically.

We calculate that TwRα · Tv ·R−αT−w = TwTRα(v)RαR−αT−w = Tw+Rα(v)−w =
TRα(v). The possible vectors Rα(v) are exactly the vectors of length equal to
the length of v. Geometrically, the conjugacy class of Tv consists of all the
translations that move points the same distance as Tv does.

2. Verify that the conjugacy class of Rα (α 6= 0) is {TvRα | v ∈ R2}. Show that
these elements are exactly the isometries that rotate the plane through an angle
α about some fixed point. (Observe that each conjugate can be written in the
form TwRαT−w, and think about its geometric effect on the plane.)

We calculate that TwRβ·Rα·R−βT−w = TwRαT−w = TwTRα(−w)Rα = Tw+Rα(−w)Rα.
Now, every vector v can be written in the form w + Rα(−w) for some w; w
and Rα(−w) are vectors of equal length meeting at an angle π + α 6= π, so
we may select w so that v bisects the angle between w and Rα(−w), then
adjust the length of w until w+Rα(−w) exactly v. So the conjugacy class is
all elements of the form TvRα.



We calculated that each conjugate TwRβ · Rα · R−βT−w equals TwRαT−w.
Consider the effect of TwRαT−w on the point w. First it is translated to
the origin, then Rα rotates everything about the origin, then the origin is
translated back to w. The composite effect is to rotate through an angle α,
but with w in the role of the origin. Conversely, any rotation through an
angle α about a fixed point w can be regarded as this conjugate TwRαT−w.

35. (3/22) Recall that if H is a subgroup of a group G, then gHg−1 is the subgroup
consisting of all elements ghg−1 for h ∈ H, and recall that H is called a normal
subgroup if gHg−1 = H for all g ∈ G.

1. Verify that every subgroup of an abelian group is normal.

2. Verify that the subgroup consisting of the powers of α is a normal subgroup of
Dn.

3. Verify that the subgroup consisting of the powers of β is a normal subgroup of
Dn if and only if n ≤ 2.

For n ≤ 2, Dn is abelian so every subgroup is normal. If n ≥ 3, then α2 6= 1,
so α 6= α−1, so βαβ−1 6= α, so α−1βα 6= β. Therefore α−1βα /∈ {1, β},
showing that {1, β} is not normal.

4. Let T be the subgroup of Isom+(R2) consisting of all translations, that is, all
elements of the form Tv. Verify that T is isomorphic to R2, and is a normal
subgroup of Isom+(R2).

5. Let R be the subgroup of Isom+(R2) consisting of all rotations, that is all elements
of the form Rα. Verify that R is isomorphic to S1, and is not a normal subgroup
of Isom(R2).

6. Find a subgroup of Isom(R2) (not Isom+(R2), as you will want to use the isometry
τ(x, y) = (x,−y)) that is isomorphic to Dn.

Put α = R2π/n and β = τ . Then α has order n, β has order 2, and βαβ−1 =
τR2π/nτ = R−2π/n = α−1. One can check that the elements αiβj for 0 ≤ i ≤
n− 1 and 0 ≤ j ≤ 1 are distinct, so α and β produce a subgroup isomorphic
to Dn.

36. (3/22) Consider the quotient space of the standard 2-sphere S2 in R3, obtained by
identifying each x with −x.

1. Show that the quotient space is homeomorphic to the real projective plane P =
RP2, obtained from a Möbius band and a 2-disk by identifying their boundary
circles.

Perhaps the easiest way is to think of first identifying each point below the
equator with its corresponding point above the equator, giving just the upper
hemipshere which is a disk D2, and then making the remaining identifications
on the equator, which amounts to identifying the opposite points on ∂D2; thus
the quotient is one of our standard descriptions of RP2.



2. Let p : S2 → P be this quotient map. Show (a good picture should be enough)
that each x ∈ P has an open neighborhood U for which p−1(U) consists of two
copies of U , each mapped homeomorphically to U by the restriction of p.

For x ∈ P , the preimage is two points x̃ and −x̃ in S2. Take D to be a small
open disk in S2 centered at x̃, and let −D be the disk consisting of all −z
for z ∈ D. Then the quotient map identifies each point in D with a unique
point in −D, producing an open disk neighborhood U of x with the desired
property. Note that this also verifies that P is a manifold.

3. The previous condition implies that p : S2 → P satisfies the unique path lifting
and unique homotopy lifting theorems, just as with the map R → S1 (no need to
prove this, the argument is exactly the same). Use these to prove that π1(P ) ∼= C2

(the fact that S2 is simply-connected, which we proved in class since we proved
that π1(S

2) = {1}, is needed in the argument).

Choose as basepoint the equivalence class x0 = {N,S} of the north and south
poles. Any loop α in RP2 based at x0 has a unique lift α̃ starting at N . Define
Φ: π1(RP2, x0) → C2 = {1, σ} by Φ(〈α〉) = 1 if α̃(1) = N (that is, if α lifts
to a loop at N) and Φ(〈α〉) = σ if α̃(1) = S.

We note first that Φ is well-defined, for a path homotopy between α and α′

lifts to a path homotopy between their lifts, so α(1) = α′(1).

To see that Φ is injective, suppose that Φ(α̃ 'p α̃′. Then α̃ and α̃′ have
the same starting point, N , and the same ending point. Since S2 is simply-
connected, there exists a path homotopy F : α̃ 'p α̃′. Then, p ◦ F : α 'p α

′,
so 〈α〉 = 〈α′〉.
Finally, to see that Φ is surjective, c̃x0 = cN , and cN(1) = N , so Φ(〈cx0〉) =
1 ∈ C2. Now, let γ be any path in S2 from N to S, and define α = p ◦ γ.
Then, α̃(1) = γ(1) = S, so Φ(〈α〉) = σ.


