Math 5863 homework solutions

26. (3/8) Let $\alpha: I \rightarrow S^{1}$ be a path. Let $\widetilde{\beta}_{1}$ and $\widetilde{\beta}_{2}$ be two lifts of α to \mathbb{R}. Prove that for some $N \in \mathbb{Z}, \widetilde{\beta}_{2}(t)=\widetilde{\beta}_{1}(t)+N$ for all $t \in I$ (let $N=\widetilde{\beta}_{2}(0)-\widetilde{\beta}_{1}(0)$ and define $\tau(r)=r+N$, check that $p \circ \tau=p$, and use uniqueness of path lifting). Deduce that $\widetilde{\beta}_{1}(1)-\widetilde{\beta}_{1}(0)=\widetilde{\beta}_{2}(1)-\widetilde{\beta}_{2}(0)$.

Let $N=\widetilde{\beta}_{2}(0)-\widetilde{\beta}_{1}(0)$. Since $p\left(\widetilde{\beta}_{1}(0)-\widetilde{\beta}_{1}(0)\right)=\exp \left(2 \pi i \widetilde{\beta}_{2}(0)-2 \pi i \widetilde{\beta}_{1}(0)\right)=$ $\exp \left(2 \pi i \widetilde{\beta}_{2}(0)\right) / \exp \left(2 \pi i \widetilde{\beta}_{1}(0)=p\left(\widetilde{\beta}_{2}(0)\right) / p\left(\widetilde{\beta}_{1}(0)\right)=\alpha(0) / \alpha(0)=1, N\right.$ is an integer. Define $\tau: \mathbb{R} \rightarrow \mathbb{R}$ by $\tau(r)=r+N$, so that $p \circ \tau(r)=p(r+N)=p(r)$, that is, $p \circ \tau=p$. We have $p \circ \tau \circ \widetilde{\beta}_{1}=p \circ \widetilde{\beta}_{1}=\alpha$, and $\tau \circ \widetilde{\beta}_{1}(0)=\widetilde{\beta}_{2}(0)$, so by uniqueness of lifts, $\tau \circ \widetilde{\beta}_{1}=\widetilde{\beta}_{2}$, that is, $\widetilde{\beta}_{2}(t)=\widetilde{\beta}_{1}(t)+N$ for all t. In particular, for $t=1$ we have $\widetilde{\beta}_{2}(1)=\widetilde{\beta}_{1}(1)+\widetilde{\beta}_{2}(0)-\widetilde{\beta}_{1}(0)$, so $\widetilde{\beta}_{1}(1)-\widetilde{\beta}_{1}(0)=\widetilde{\beta}_{2}(1)-\widetilde{\beta}_{2}(0)$.
27. (3/8) Prove that $q: \mathbb{Z} \times \mathbb{R} \rightarrow S^{1}$ defined by $q(n, r)=p(r)$ has unique path lifting and unique homotopy lifting. (Let $\alpha: I \rightarrow S^{1}$ and let $\left(n, r_{0}\right) \in \mathbb{Z} \times \mathbb{R}$ with $q\left(n, r_{0}\right)=\alpha(0)$. By unique path lifting for $\mathbb{R} \rightarrow S^{1}$, there exists $\widetilde{\alpha}_{1}: I \rightarrow \mathbb{R}$ with $p \circ \widetilde{\alpha}_{1}(t)=\alpha(t)$. Use $\widetilde{\alpha}_{1}$ to define the lift $\widetilde{\alpha}$. To prove that the $\widetilde{\alpha}$ is unique, let $p_{1}: \mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{Z}$ and $p_{2}: \mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R}$ be the projection maps, and show that $p_{1} \circ \widetilde{\alpha}$ and $p_{2} \circ \widetilde{\alpha}$ are uniquely determined.)

Let $\alpha: I \rightarrow S^{1}$ and let $\left(n, r_{0}\right) \in \mathbb{Z} \times \mathbb{R}$ with $q\left(n, r_{0}\right)=\alpha(0)$. By unique path lifting for $\mathbb{R} \rightarrow S^{1}$, there exists $\widetilde{\alpha}_{1}: I \rightarrow \mathbb{R}$ with $p \circ \widetilde{\alpha}_{1}(t)=\alpha(t)$. Define $\widetilde{\alpha}: I \rightarrow \mathbb{Z} \times \mathbb{R}$ by $\widetilde{\alpha}(t)=\left(n, \widetilde{\alpha}_{1}(t)\right)$; this is a lift of α. To prove that it is unique, suppose that $\widetilde{\gamma}(t): I \rightarrow \mathbb{Z} \times \mathbb{R}$ is any lift of α starting at $\left(n, r_{0}\right)$. Let $p_{1}: \mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{Z}$ and $p_{2}: \mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R}$ be the projection maps. Now $p_{1} \circ \widetilde{\gamma}: I \rightarrow \mathbb{Z}$, and since the maximal connected subsets of \mathbb{Z} are points, $p_{1} \circ \widetilde{\gamma}$ must be the constant map to n. On the other hand, $p_{2} \circ \widetilde{\gamma}: I \rightarrow \mathbb{R}$, and $p \circ p_{2} \circ \widetilde{\gamma}=q \circ \widetilde{\gamma}=\alpha$, so by uniqueness of lifts to $\mathbb{R}, p_{2} \circ \widetilde{\gamma}=\widetilde{\alpha}_{1}$. Since $p_{1} \circ \widetilde{\gamma}=p_{1} \circ \widetilde{\alpha}$ and $p_{2} \circ \widetilde{\gamma}=p_{2} \circ \widetilde{\alpha}$, we have $\widetilde{\gamma}=\widetilde{\alpha}$. The proof for unique lifting of homotopies is very similar.
28. (3/8) Prove that $q_{n}: S^{1} \rightarrow S^{1}$ defined by $q_{n}(z)=z^{n}$ (where $z \in \mathbb{C}$) has unique path lifting and unique homotopy lifting. Hint: do not repeat the proof of these results for $p: \mathbb{R} \rightarrow S^{1}$. Define $p_{n}: \mathbb{R} \rightarrow S^{1}$ by $p_{n}(r)=p(r / n)$ and use the facts that $p=q_{n} \circ p_{n}$ and that p has unique path lifting and unique homotopy lifting.

Let $\alpha: I \rightarrow S^{1}$ and suppose that $s_{0} \in S^{1}$ with $p\left(s_{0}\right)=\alpha(0)$. Define $p_{n}: \mathbb{R} \rightarrow S^{1}$ by $p_{n}(r)=p(r / n)$, so that $q_{n} \circ p_{n}(r)=\left(e^{2 \pi i r / n}\right)^{n}=e^{2 \pi i r}=p(r)$, that is, $q_{n} \circ p_{n}=p$. Choose $r_{0} \in \mathbb{R}$ with $p_{n}\left(r_{0}\right)$. By unique lifting for p, there exists $\widetilde{\alpha}: I \rightarrow \mathbb{R}$ so that $p \circ \widetilde{\alpha}=\alpha$. Then, we have $p_{n} \circ \widetilde{\alpha}: I \rightarrow S^{1}$ with $q_{n} \circ p_{n} \circ \widetilde{\alpha}=p \circ \widetilde{\alpha}=\alpha$, and $p_{n} \circ \widetilde{\alpha}(0)=p_{n}\left(r_{0}\right)=s_{n}$, proving existence of lifts for q_{n}.
For uniqueness, suppose that $\widetilde{\alpha_{1}}, \widetilde{\alpha_{2}}: I \rightarrow S^{1}$ are two lifts of α taking 0 to s_{0}. Define $s_{n}: \mathbb{R} \rightarrow \mathbb{R}$ by $s_{n}(r)=n r$, so that $p_{n} \circ s_{n}=p$ and $p_{n} \circ s_{n}\left(r_{0} / n\right)=s_{0}$. By uniqueness of lifts for p, for each of $i=1,2$ there exists a unique $\widetilde{\widetilde{\alpha}}_{i}: I \rightarrow \mathbb{R}$ for
which $p \circ \widetilde{\widetilde{\alpha}}_{i}=\widetilde{\alpha_{i}}$ and $\widetilde{\widetilde{\alpha}}_{i}(0)=r_{0} / n$. Now $q_{n} \circ p_{n} \circ s_{n} \circ \widetilde{\widetilde{\alpha}_{i}}=q_{n} \circ p \circ \widetilde{\alpha_{1}}=q_{n} \widetilde{\alpha}_{i}=\alpha$. That is, $p \circ s_{n} \circ \widetilde{\widetilde{\alpha_{1}}}=p \circ s_{n} \circ \widetilde{\widetilde{\alpha_{2}}}$. Since $s_{n} \circ \widetilde{\alpha_{i}}(0)=s_{n}\left(r_{0} / n\right)=r_{0}$, uniqueness of lifts for p implies that $s_{n} \circ \widetilde{\widetilde{\alpha_{1}}}=s_{n} \circ \widetilde{\widetilde{\alpha_{1}}}$. Therefore $p_{n} \circ s_{n} \circ \widetilde{\widetilde{\alpha_{1}}}=p_{n} \circ s_{n} \circ \widetilde{\widetilde{\alpha_{2}}}$. But this says that $p \circ \widetilde{\alpha_{1}}=p \circ \widetilde{\widetilde{\alpha_{2}}}$, which is $\widetilde{\alpha_{1}}=\widetilde{\alpha_{2}}$.
The same proof works for unique lifting of homotopies.
29. (3/8) Give an example of a map $p: E \rightarrow B$ that has path lifting and homotopy lifting, but not uniquely. Hint: one example carries $\mathbb{R} \times I$ to S^{1}.

Define $q: \mathbb{R} \times I \rightarrow \mathbb{R}$ by $q(r, s)=p(r)$. Let $\alpha: I \rightarrow \mathbb{R}$ be any path, and let $\left(r_{0}, s_{0}\right) \in \mathbb{R} \times I$ with $q\left(r_{0}, s_{0}\right)=\alpha(0)$, which says that $p\left(r_{0}\right)=\alpha(0)$. By the existence of lifts for p, there exists $\widetilde{\alpha}: I \rightarrow \mathbb{R}$ such that $p \circ \widetilde{\alpha}=\alpha$ and $\widetilde{\alpha}(0)=r_{0}$. Let $\beta: I \rightarrow I$ be any path with $\beta(0)=s_{0}$. Define $\widetilde{\widetilde{\alpha}}: I \rightarrow \mathbb{R} \times I$ by $\widetilde{\widetilde{\alpha}}(t)=(\widetilde{\alpha}(t), \beta(t))$. Then $q \circ \widetilde{\widetilde{\alpha}}=p \circ \widetilde{\alpha}=\alpha$ and $\widetilde{\widetilde{\alpha}}(0)=(\widetilde{\alpha}(0), \beta(0))=\left(r_{0}, s_{0}\right)$, so $\widetilde{\widetilde{\alpha}}$ is a lift of α starting at $\left(r_{0}, s_{0}\right)$. But each different choice of β gives a different lift. So starting from any point in $q^{-1}(\alpha(0))$, we always have infinitely many lifts of α. The same construction works for homotopies, replacing I by $I \times I$.
30. Let A be a subspace of X, and $i: A \rightarrow X$ the inclusion map. Recall that a retraction $r: X \rightarrow A$ is a map such that $r \circ i=i d_{A}$. Define r to be a deformation retraction if there is a homotopy $F: i d_{X} \simeq i \circ r$ with $F(a, t)=a$ for all t and all $a \in A$. (Note: this is sometimes called a strong deformation retraction.) If there exists a deformation retraction from X to A, we say that A is a deformation retract of X.

1. Show that each $X \times\left\{t_{0}\right\}$ is a deformation retract of $X \times I$ (most of it is just showing that each t_{0} is a deformation retract of I).

A deformation retract of I to $\left\{t_{0}\right\} \subset I$ is defined by $R(t, s)=(1-s) t+s t_{0}$. Now, define $F: X \times I \rightarrow X$ by $F((x, t), s)=(x, R(t, s))$.
2. Show that the center circle of a Möbius band is a deformation retract of the Möbius band.

Regard the Möbius band M as the square $I \times I$ with identifications $(0, y) \sim$ $(1,1-y)$. Note that the center circle is the subset $(I \times\{1 / 2\}) /(0,1 / 2) \sim$ $(1,1 / 2)$. Define a deformation retraction $F: I \times I \rightarrow I \times I$ by $F((x, y), t)=$ $(x,(1-t) y+t / 2)$. This is a deformation retraction of $I \times I$ to $I \times\{1 / 2\}$. To check that it produces a well-defined map on $M \times I$, we observe that $F((0, y), t)=(0,(1-t) y+t / 2) \sim(1,1-(1-t) y-t / 2)=(1,(1-t)(1-$ $y)+t / 2)=F((1,1-y), t)$ for all t, y. So F preserves identified points and therefore it induces a deformation retraction $\bar{F}: M \times I \rightarrow M$ onto the center circle.
3. Show that if A is a deformation retract of X, then $i_{\#}: \pi_{1}\left(A, a_{0}\right) \rightarrow \pi_{1}\left(X, a_{0}\right)$ is an isomorphism for each basepoint $a_{0} \in A$.

We will show that $i_{\#}: \pi_{1}\left(A, a_{0}\right) \rightarrow \pi_{1}\left(X, a_{0}\right)$ is an isomorphism. We have $i d_{A}=r \circ i$, so $i d_{\pi_{1}\left(A, a_{0}\right)}=r_{\#} \circ i_{\#}$, showing that $i_{\#}$ is injective. To see that $i_{\#}$ is surjective, let $\langle\alpha\rangle \in \pi_{1}\left(X, a_{0}\right)$. Define $G: I \times I \rightarrow X$ by $G(t, s)=F(\alpha(t), s)$. Then $G(t, 0)=F(\alpha(t), 0)=\alpha(t), G(0, s)=F(\alpha(0), s)=F\left(a_{0}, s\right)=a_{0}$ and similarly $G(1, s)=a_{0}$, and $G(t, 1)=F(\alpha(t), 1)=i \circ r(\alpha(t)) \in A$. Since $r \circ \alpha(t) \in A, i^{-1} \circ r \circ \alpha(t)$ is defined. Letting $\beta=i^{-1} \circ r \circ \alpha$, we have $i_{\#}(\langle\beta\rangle)=\langle i \circ \beta\rangle=\left\langle i \circ i^{-1} \circ r \circ \alpha\right\rangle=\langle r \circ \alpha\rangle=\langle\alpha\rangle$.

