Math 5863 homework

33. (3/22) For $n \geq 2$, the dihedral group of order $2 n$ is the group D_{n} consisting of all pairs $\alpha^{i} \beta^{j}$ where i is an integer modulo n and j is an integer modulo 2 , with the multiplication rule that $\alpha^{i} \beta^{j} \alpha^{k} \beta^{\ell}=\alpha^{i+(-1)^{j} k} \beta^{j+\ell}$ (that is, $\beta \alpha^{i} \beta^{-1}=\alpha^{-i}$). Verify the following:
34. Check that the condition $\alpha^{i} \beta^{j} \alpha^{k} \beta^{\ell}=\alpha^{i+(-1)^{j} k} \beta^{j+\ell}$ implies that $\beta \alpha \beta^{-1}=\alpha^{-1}$, and that the condition that $\beta \alpha \beta^{-1}=\alpha^{-1}$ implies that $\alpha^{i} \beta^{j} \alpha^{k} \beta^{\ell}=\alpha^{i+(-1)^{j} k} \beta^{j+\ell}$. Thus, people write $D_{n}=\left\langle\alpha, \beta \mid \alpha^{n}=\beta^{2}=1, \beta \alpha \beta^{-1}=\alpha^{-1}\right\rangle$.
35. D_{n} has $2 n$ elements.
36. D_{1} is isomorphic to C_{2}.
37. D_{2} is isomorphic to $C_{2} \times C_{2}$.
38. D_{n} is nonabelian for $n \geq 3$.
39. The powers of α form a subgroup isomorphic to C_{n}.
40. The powers of β form a subgroup isomorphic to C_{2}.
41. Find the conjugacy class of each element of D_{n}.
42. $(3 / 22)$ Recall that the group Isom $_{+}\left(\mathbb{R}^{2}\right)$ of orientation-preserving isometries consists of all compositions $T_{v} R_{\alpha}$, for $v \in \mathbb{R}^{2}$ and $\alpha \in S^{1}$ (where we regard S^{1} as the additive group of real numbers modulo 2π), with multiplication given by $T_{v} R_{\alpha} T_{w} R_{\beta}=T_{v+R_{\alpha}(w)} R_{\alpha+\beta}$. Note that the inverse of $T_{v} R_{\alpha}$ is $R_{-\alpha} T_{-v}$, which is also equal to $T_{R_{-\alpha}(-v)} R_{-\alpha}$.
43. Verify that the conjugacy class of $T_{v}(v \neq 0)$ is $\left\{T_{w} \mid\|w\|=\|v\|\right\}$. Describe these elements geometrically.
44. Verify that the conjugacy class of $R_{\alpha}(\alpha \neq 0)$ is $\left\{T_{v} R_{\alpha} \mid v \in \mathbb{R}^{2}\right\}$. Show that these elements are exactly the isometries that rotate the plane through an angle α about some fixed point. (Observe that each conjugate can be written in the form $T_{w} R_{\alpha} T_{-w}$, and think about its geometric effect on the plane.)
