Math 5863 homework

- 33. (3/22) For $n \geq 2$, the dihedral group of order 2n is the group D_n consisting of all pairs $\alpha^i \beta^j$ where *i* is an integer modulo *n* and *j* is an integer modulo 2, with the multiplication rule that $\alpha^i \beta^j \alpha^k \beta^\ell = \alpha^{i+(-1)^j k} \beta^{j+\ell}$ (that is, $\beta \alpha^i \beta^{-1} = \alpha^{-i}$). Verify the following:
 - 1. Check that the condition $\alpha^i \beta^j \alpha^k \beta^\ell = \alpha^{i+(-1)^{j_k}} \beta^{j+\ell}$ implies that $\beta \alpha \beta^{-1} = \alpha^{-1}$, and that the condition that $\beta \alpha \beta^{-1} = \alpha^{-1}$ implies that $\alpha^i \beta^j \alpha^k \beta^\ell = \alpha^{i+(-1)^{j_k}} \beta^{j+\ell}$. Thus, people write $D_n = \langle \alpha, \beta \mid \alpha^n = \beta^2 = 1, \beta \alpha \beta^{-1} = \alpha^{-1} \rangle$.
 - 2. D_n has 2n elements.
 - 3. D_1 is isomorphic to C_2 .
 - 4. D_2 is isomorphic to $C_2 \times C_2$.
 - 5. D_n is nonabelian for $n \ge 3$.
 - 6. The powers of α form a subgroup isomorphic to C_n .
 - 7. The powers of β form a subgroup isomorphic to C_2 .
 - 8. Find the conjugacy class of each element of D_n .
- 34. (3/22) Recall that the group $\operatorname{Isom}_+(\mathbb{R}^2)$ of orientation-preserving isometries consists of all compositions $T_v R_\alpha$, for $v \in \mathbb{R}^2$ and $\alpha \in S^1$ (where we regard S^1 as the additive group of real numbers modulo 2π), with multiplication given by $T_v R_\alpha T_w R_\beta = T_{v+R_\alpha(w)} R_{\alpha+\beta}$. Note that the inverse of $T_v R_\alpha$ is $R_{-\alpha} T_{-v}$, which is also equal to $T_{R_{-\alpha}(-v)} R_{-\alpha}$.
 - 1. Verify that the conjugacy class of T_v $(v \neq 0)$ is $\{T_w \mid ||w|| = ||v||\}$. Describe these elements geometrically.
 - 2. Verify that the conjugacy class of R_{α} ($\alpha \neq 0$) is $\{T_v R_{\alpha} \mid v \in \mathbb{R}^2\}$. Show that these elements are exactly the isometries that rotate the plane through an angle α about some fixed point. (Observe that each conjugate can be written in the form $T_w R_{\alpha} T_{-w}$, and think about its geometric effect on the plane.)