Math 5863 homework solutions

- 23. Let G be a group. For an element g group G, define conjugation by g to be the function $\mu(g): G \to G$ that sends x to gxg^{-1} .
 - 1. Check that $\mu(1) = id_G$ and $\mu(g_1g_2) = \mu(g_1)\mu(g_2)$. Deduce that $\mu(g)$ is an isomorphism of G.

 $\mu(1)(x) = 1x1 = x = id_G(x) \text{ for all } x. \text{ For all } x, \ \mu(g_1g_2)(x) = g_1g_2x(g_1g_2)^{-1} = g_1g_2xg_2^{-1}g_1^{-1} = g_1\mu(g_2)(x)g_1^{-1} = \mu(g_1)\mu(g_2)(x), \text{ so } \mu(g_1g_2) = \mu(g_1)\mu(g_2). \text{ Conjugation is a homomorphism because } \mu(g)(g_1g_2) = gg_1g_2g^{-1} = gg_1g^{-1}gg_2g^{-1} = \mu(g)(g_1)\mu(g)(g_2). \text{ Using the facts already shown, we have } id_G = \mu(1) = \mu(gg^{-1}) = \mu(g)\mu(g^{-1}), \text{ and similarly } id_G = \mu(g^{-1})\mu(g), \text{ so } \mu(g) \text{ is an automorphism with inverse } \mu(g^{-1}). \text{ That is, } \mu(g)^{-1} = \mu(g^{-1}).$

- 2. Define $\operatorname{Aut}(G)$ to be the set of automorphisms of G. Check that $\operatorname{Aut}(G)$ is a group under the operation of composition.
- 3. Define Inn(G) to be the set of inner automorphisms of G. Check that Inn(G) is a normal subgroup of G.

An inner automorphism is a conjugation $\mu(g)$. The inner automorphisms form a subgroup $\operatorname{Inn}(G)$ of $\operatorname{Aut}(G)$ because if $\mu(g_1), \mu(g_2) \in \operatorname{Inn}(G)$, then $\mu(g_1)\mu(g_2)^{-1} = \mu(g_1)\mu(g_2^{-1}) = \mu(g_1g_2^{-1}) \in \operatorname{Inn}(G)$. To show $\operatorname{Inn}(G)$ is normal, let $\phi \in \operatorname{Aut}(G)$ and $g \in G$. We have $\phi\mu(g)\phi^{-1}(x) = \phi\mu(g)(\phi^{-1}(x)) =$ $\phi(g\phi^{-1}(x)g^{-1}) = \phi(g)x\phi(g^{-1}) = \phi(g)x\phi(g)^{-1} = \mu(\phi(g))(x)$, so $\phi\mu(g)\phi^{-1} =$ $\mu(\phi(g)) \in \operatorname{Inn}(G)$.

- 24. Let $p_1: X \times Y \to X$ and $p_2: X \times Y \to Y$ denote the projections. Show that $(p_1)_{\#} \times (p_2)_{\#}: \pi_1(X \times Y, (x_0, y_0)) \to \pi_1(X, x_0) \times \pi_1(Y, y_0)$ is an isomorphism.
- 25. Let x_0 and x_1 be two points in the same path-component of X. For a path $\gamma: I \to X$ from x_0 to x_1 , define $h_\gamma: \pi_1(X, x_1) \to \pi_1(X, x_0)$ by $h_\gamma(\langle \alpha \rangle) = \langle \gamma * \alpha * \overline{\gamma} \rangle$.
 - 1. Show that h_{γ} is a well-defined homomorphism.

Suppose that $\langle \alpha' \rangle = \langle \alpha \rangle$, so that $\alpha \simeq_p \alpha'$. Then we have $h_{\gamma}(\langle \alpha \rangle) = \langle \gamma * \alpha * \overline{\gamma} \rangle$ and $h_{\gamma}(\langle \alpha' \rangle) = \langle \gamma * \alpha' * \overline{\gamma} \rangle$. By properties of \simeq_p developed in class, $\gamma * \alpha * \overline{\gamma} \simeq_p \gamma * \alpha' * \overline{\gamma}$, so $h_{\gamma}(\langle \alpha \rangle) = \langle$ and $h_{\gamma}(\langle \alpha' \rangle) = \langle$ are equal elements of $\pi_1(X, x_0)$.

- 2. Show that if $\gamma(1) = \tau(0)$, then $h_{\gamma*\tau} = h_{\gamma}h_{\tau}$. For any $\langle \alpha \rangle \in \pi_1(X, \tau(1))$, we have $h_{\gamma*\tau}(\langle \alpha \rangle) = \langle \gamma * \tau * \alpha * \overline{\gamma * \tau} \rangle = \langle \gamma * \tau * \alpha * \overline{\gamma * \tau} \rangle = h_{\gamma}(\langle \tau * \alpha * \overline{\tau} \rangle) = h_{\gamma}h_{\tau}(\langle \alpha \rangle)$.
- 3. Show that if γ is a loop at x_1 , then $h_{\gamma} = \mu(\langle \gamma \rangle)$. For any $\langle \alpha \rangle \in \pi_1(X, x_1)$, we have $h_{\gamma}(\langle \alpha \rangle) = \langle \gamma * \alpha * \overline{\gamma} \rangle = \langle \gamma \rangle \langle \alpha \rangle \langle \overline{\gamma} \rangle = \langle \gamma \rangle \langle \alpha \rangle \langle \gamma \rangle^{-1} = \mu(\langle \gamma \rangle)(\langle \alpha \rangle)$.
- 4. Show that if $\gamma_1 \simeq_p \gamma_2$, then $h_{\gamma_1} = h_{\gamma_2}$. Deduce that h_{γ} is an isomorphism with inverse $h_{\overline{\gamma}}$. Thus, $\pi_1(X, x_0)$ and $\pi_1(X, x_1)$ are isomorphic as long as x_0 and x_1 are in the same path component of X.

If $\gamma_1 \simeq_p \gamma_2$, then $\overline{\gamma_1} \simeq \overline{\gamma_2}$, and for any $\langle \alpha \rangle \in \pi_1(X, x_1)$, we have $\gamma_1 * \alpha * \overline{\gamma_1} \simeq_p \gamma_2 * \alpha * \overline{\gamma_2}$, so $h_{\gamma_1}(\langle \alpha \rangle) = h_{\gamma_2}(\langle \alpha \rangle)$. Noting that h_{c_x} is the identity on $\pi_1(X, x)$, and using the previous part, we have for any loop α at x_1 that $\langle \alpha \rangle = h_{c_{x_1}}(\langle \alpha \rangle) = h_{\overline{\gamma}*\gamma}(\langle \alpha \rangle) = h_{\overline{\gamma}}h_{\gamma}(\langle \alpha \rangle)$. Since this implies also that $h_{\gamma}h_{\overline{\gamma}} = h_{\overline{\gamma}}h_{\overline{\gamma}}$ is the identity on $\pi_1(X, x_0)$, we deduce that h_{γ} and $h_{\overline{\gamma}}$ are inverse homomorphisms, so are isomorphisms.

5. Show that if β is another path from x_0 to x_1 , then $h_{\beta}^{-1} \circ h_{\alpha} = \mu(\langle \overline{\beta} * \alpha \rangle)$.

Using the previous parts, we find that $h_{\beta}^{-1}h_{\alpha} = h_{\overline{\beta}}h_{\alpha} = h_{\overline{\beta}*\alpha} = \mu(\langle \overline{\beta}*\alpha \rangle).$

6. Deduce that if $\pi_1(X, x_1)$ is abelian, then $h_\alpha \colon \pi_1(X, x_1) \to \pi_1(X, x_0)$ is independent of the choice of path α from x_0 to x_1 .

If
$$\pi_1(X, x_1)$$
 is abelian, then $h_{\beta}^{-1}h_{\alpha} = \mu(\langle \overline{\beta} * \alpha \rangle) = id_{\pi_1(X, x_1)}$, so $h_{\beta} = h_{\alpha}$.

As a consequence of the previous problem, all choices of α give the same isomorphism h_{α} when X is path-connected and $\pi_1(X, x_0)$ is abelian. That is, there is a way to identify $\pi_1(X, x_0)$ with $\pi_1(X, x_1)$ that is independent of all choices, so in this situation, one may safely write $\pi_1(X)$.