Math 5863 homework solutions

23. Let G be a group. For an element g group G, define conjugation by g to be the function $\mu(g): G \rightarrow G$ that sends x to $g x g^{-1}$.
24. Check that $\mu(1)=i d_{G}$ and $\mu\left(g_{1} g_{2}\right)=\mu\left(g_{1}\right) \mu\left(g_{2}\right)$. Deduce that $\mu(g)$ is an isomorphism of G.
$\mu(1)(x)=1 x 1=x=i d_{G}(x)$ for all x. For all $x, \mu\left(g_{1} g_{2}\right)(x)=g_{1} g_{2} x\left(g_{1} g_{2}\right)^{-1}=$ $g_{1} g_{2} x g_{2}^{-1} g_{1}^{-1}=g_{1} \mu\left(g_{2}\right)(x) g_{1}^{-1}=\mu\left(g_{1}\right) \mu\left(g_{2}\right)(x)$, so $\mu\left(g_{1} g_{2}\right)=\mu\left(g_{1}\right) \mu\left(g_{2}\right)$. Conjugation is a homomorphism because $\mu(g)\left(g_{1} g_{2}\right)=g g_{1} g_{2} g^{-1}=g g_{1} g^{-1} g g_{2} g^{-1}=$ $\mu(g)\left(g_{1}\right) \mu(g)\left(g_{2}\right)$. Using the facts already shown, we have $i d_{G}=\mu(1)=$ $\mu\left(g g^{-1}\right)=\mu(g) \mu\left(g^{-1}\right)$, and similarly $i d_{G}=\mu\left(g^{-1}\right) \mu(g)$, so $\mu(g)$ is an automorphism with inverse $\mu\left(g^{-1}\right)$. That is, $\mu(g)^{-1}=\mu\left(g^{-1}\right)$.
25. Define $\operatorname{Aut}(G)$ to be the set of automorphisms of G. Check that $\operatorname{Aut}(G)$ is a group under the operation of composition.
26. Define $\operatorname{Inn}(G)$ to be the set of inner automorphisms of G. Check that $\operatorname{Inn}(G)$ is a normal subgroup of G.

An inner automorphism is a conjugation $\mu(g)$. The inner automorphisms form a subgroup $\operatorname{Inn}(G)$ of $\operatorname{Aut}(G)$ because if $\mu\left(g_{1}\right), \mu\left(g_{2}\right) \in \operatorname{Inn}(G)$, then $\mu\left(g_{1}\right) \mu\left(g_{2}\right)^{-1}=\mu\left(g_{1}\right) \mu\left(g_{2}^{-1}\right)=\mu\left(g_{1} g_{2}^{-1}\right) \in \operatorname{Inn}(G)$. To show $\operatorname{Inn}(G)$ is normal, let $\phi \in \operatorname{Aut}(G)$ and $g \in G$. We have $\phi \mu(g) \phi^{-1}(x)=\phi \mu(g)\left(\phi^{-1}(x)\right)=$ $\phi\left(g \phi^{-1}(x) g^{-1}\right)=\phi(g) x \phi\left(g^{-1}\right)=\phi(g) x \phi(g)^{-1}=\mu(\phi(g))(x)$, so $\phi \mu(g) \phi^{-1}=$ $\mu(\phi(g)) \in \operatorname{Inn}(G)$.
24. Let $p_{1}: X \times Y \rightarrow X$ and $p_{2}: X \times Y \rightarrow Y$ denote the projections. Show that $\left(p_{1}\right)_{\#} \times$ $\left(p_{2}\right)_{\#}: \pi_{1}\left(X \times Y,\left(x_{0}, y_{0}\right)\right) \rightarrow \pi_{1}\left(X, x_{0}\right) \times \pi_{1}\left(Y, y_{0}\right)$ is an isomorphism.
25. Let x_{0} and x_{1} be two points in the same path-component of X. For a path $\gamma: I \rightarrow X$ from x_{0} to x_{1}, define $h_{\gamma}: \pi_{1}\left(X, x_{1}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ by $h_{\gamma}(\langle\alpha\rangle)=\langle\gamma * \alpha * \bar{\gamma}\rangle$.

1. Show that h_{γ} is a well-defined homomorphism.

Suppose that $\left\langle\alpha^{\prime}\right\rangle=\langle\alpha\rangle$, so that $\alpha \simeq_{p} \alpha^{\prime}$. Then we have $h_{\gamma}(\langle\alpha\rangle)=\langle\gamma * \alpha * \bar{\gamma}\rangle$ and $h_{\gamma}\left(\left\langle\alpha^{\prime}\right\rangle\right)=\left\langle\gamma * \alpha^{\prime} * \bar{\gamma}\right\rangle$. By properties of \simeq_{p} developed in class, $\gamma * \alpha * \bar{\gamma} \simeq_{p}$ $\gamma * \alpha^{\prime} * \bar{\gamma}$, so $h_{\gamma}(\langle\alpha\rangle)=\left\langle\right.$ and $h_{\gamma}\left(\left\langle\alpha^{\prime}\right\rangle\right)=\left\langle\right.$ are equal elements of $\pi_{1}\left(X, x_{0}\right)$.
2. Show that if $\gamma(1)=\tau(0)$, then $h_{\gamma * \tau}=h_{\gamma} h_{\tau}$.

For any $\langle\alpha\rangle \in \pi_{1}(X, \tau(1))$, we have $h_{\gamma * \tau}(\langle\alpha\rangle)=\langle\gamma * \tau * \alpha * \overline{\gamma * \tau}\rangle=\langle\gamma * \tau *$ $\alpha * \bar{\tau} * \bar{\gamma}\rangle=h_{\gamma}(\langle\tau * \alpha * \bar{\tau}\rangle)=h_{\gamma} h_{\tau}(\langle\alpha\rangle)$.
3. Show that if γ is a loop at x_{1}, then $h_{\gamma}=\mu(\langle\gamma\rangle)$.

For any $\langle\alpha\rangle \in \pi_{1}\left(X, x_{1}\right)$, we have $h_{\gamma}(\langle\alpha\rangle)=\langle\gamma * \alpha * \bar{\gamma}\rangle=\langle\gamma\rangle\langle\alpha\rangle\langle\bar{\gamma}\rangle=$ $\langle\gamma\rangle\langle\alpha\rangle\langle\gamma\rangle^{-1}=\mu(\langle\gamma\rangle)(\langle\alpha\rangle)$.
4. Show that if $\gamma_{1} \simeq_{p} \gamma_{2}$, then $h_{\gamma_{1}}=h_{\gamma_{2}}$. Deduce that h_{γ} is an isomorphism with inverse $h_{\bar{\gamma}}$. Thus, $\pi_{1}\left(X, x_{0}\right)$ and $\pi_{1}\left(X, x_{1}\right)$ are isomorphic as long as x_{0} and x_{1} are in the same path component of X.

If $\gamma_{1} \simeq_{p} \gamma_{2}$, then $\overline{\gamma_{1}} \simeq \overline{\gamma_{2}}$, and for any $\langle\alpha\rangle \in \pi_{1}\left(X, x_{1}\right)$, we have $\gamma_{1} * \alpha *$ $\overline{\gamma_{1}} \simeq_{p} \gamma_{2} * \alpha * \overline{\gamma_{2}}$, so $h_{\gamma_{1}}(\langle\alpha\rangle)=h_{\gamma_{2}}(\langle\alpha\rangle)$. Noting that $h_{c_{x}}$ is the identity on $\pi_{1}(X, x)$, and using the previous part, we have for any loop α at x_{1} that $\langle\alpha\rangle=h_{c_{x_{1}}}(\langle\alpha\rangle)=h_{\bar{\gamma} * \gamma}(\langle\alpha\rangle)=h_{\bar{\gamma}} h_{\gamma}(\langle\alpha\rangle)$. Since this implies also that $h_{\gamma} h_{\bar{\gamma}}=$ $h_{\overline{\bar{\gamma}}} h_{\bar{\gamma}}$ is the identity on $\pi_{1}\left(X, x_{0}\right)$, we deduce that h_{γ} and $h_{\bar{\gamma}}$ are inverse homomorphisms, so are isomorphisms.
5. Show that if β is another path from x_{0} to x_{1}, then $h_{\beta}^{-1} \circ h_{\alpha}=\mu(\langle\bar{\beta} * \alpha\rangle)$. Using the previous parts, we find that $h_{\beta}^{-1} h_{\alpha}=h_{\bar{\beta}} h_{\alpha}=h_{\bar{\beta} * \alpha}=\mu(\langle\bar{\beta} * \alpha\rangle)$.
6. Deduce that if $\pi_{1}\left(X, x_{1}\right)$ is abelian, then $h_{\alpha}: \pi_{1}\left(X, x_{1}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ is independent of the choice of path α from x_{0} to x_{1}.

$$
\text { If } \pi_{1}\left(X, x_{1}\right) \text { is abelian, then } h_{\beta}^{-1} h_{\alpha}=\mu(\langle\bar{\beta} * \alpha\rangle)=i d_{\pi_{1}\left(X, x_{1}\right)} \text {, so } h_{\beta}=h_{\alpha} .
$$

As a consequence of the previous problem, all choices of α give the same isomorphism h_{α} when X is path-connected and $\pi_{1}\left(X, x_{0}\right)$ is abelian. That is, there is a way to identify $\pi_{1}\left(X, x_{0}\right)$ with $\pi_{1}\left(X, x_{1}\right)$ that is independent of all choices, so in this situation, one may safely write $\pi_{1}(X)$.

