Math 5863 homework

- 31. (3/22) Denote the automorphism group of a group G by Aut(G). Determine the following automorphism groups:
 - 1. Aut(\mathbb{Z}). (Consider $\phi(1)$.)
 - 2. C_n . (Write C_n as $\{1, \alpha, \alpha^2, \ldots, \alpha^{n-1}\}$. Observe that a homomorphism $\phi: C_n \to C_n$ is completely determined by $\phi(\alpha) = \alpha^m$. Show that ϕ is injective– hence bijective, since C_n is finite— if and only if m and n are relatively prime. Deduce that $\operatorname{Aut}(C_n) \cong \{1 \leq m < n \mid \gcd(m, n) = 1\}$ with the operation of multiplication modulo n.)
 - 3. Verify that $\operatorname{Aut}(C_{12}) \cong C_2 \times C_2$.
 - 4. Aut($\mathbb{Z} \times \mathbb{Z}$) (Regard elements of $\mathbb{Z} \times \mathbb{Z}$ as column vectors $\begin{bmatrix} a \\ b \end{bmatrix}$. Write $\phi \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{pmatrix} \begin{bmatrix} a \\ c \end{bmatrix} \right)$ and $\phi \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{pmatrix} \begin{bmatrix} b \\ d \end{bmatrix} \right)$, and observe that ϕ equals left multiplication by the matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Verify that Aut($\mathbb{Z} \times \mathbb{Z}$) is isomorphic to the group GL(2, \mathbb{Z}) of 2 × 2 matrices with integer entries and determinant ±1. This generalizes to direct products of any number of copies of \mathbb{Z} , that is, Aut(\mathbb{Z}^n) \cong GL(n, \mathbb{Z}), but you do not need to work out the details of this.)
- 32. (3/22) Recall that two elements g_1 and g_2 of a group G are said to be *conjugate* if there exists an element $g \in G$ such that $gg_1g^{-1} = g_2$. The *conjugacy class* of g_1 is the set of all elements of G that are conjugate to g_1 .
 - 1. Verify that the relation of being conjugate is an equivalence relation.
 - 2. Verify that the conjugacy class of the identity element is the identity element.