Math 5863 homework solutions

19. Prove that two paths $\alpha, \beta: I \rightarrow \mathbb{R}^{n}$ are path-homotopic if and only if they have the same starting point and the same ending point.

If $F: \alpha \simeq_{p} \beta$, then $\alpha(0)=F(t, 0)=F(t, 1)=\beta(0)$, and similarly $\alpha(1)=\beta(1)$. Conversely, suppose that α and β have the same starting point and the same ending point. Define $F: I \times I \rightarrow \mathbb{R}^{n}$ by $F(t, s)=(1-s) \alpha(t)+s \beta(t)$. One checks easily that $F: \alpha \simeq_{p} \beta$. We remark that this applies just as well to paths in any convex subset of \mathbb{R}^{n}.
20. Let X be a path-connected space. We say that X is simply-connected if every two paths in X that have the same starting point and same ending point are path-homotopic. Prove that X is simply-connected if and only if every map from S^{1} to X extends to a map from D^{2} to X. Hint: Use the quotient map from $I \times I$ to D^{2} that maps $\{0\} \times I$ to -1 and $\{1\} \times I$ to 1 . For sufficiency, given a map from S^{1} to X let α be its restriction to the upper half-circle and let β be its restriction to the bottom half-circle.

Suppose first that X is simply-connected. Let $f: S^{1} \rightarrow X$ be a map of the circle. Define paths $\alpha, \beta: I \rightarrow X$ by $\alpha(t)=f(\cos (\pi(1-t)), \sin (\pi(1-t)))$ and $\beta(t)=f(\cos (\pi(1-t)), \sin (-\pi(1-t)))$ for $0 \leq t \leq 1$. We see that $\alpha(0)=$ $\beta(0)=f(-1,0)$ and $\alpha(1)=\beta(1)=f(1,0)$. Since X is simply-connected, there is a path homotopy $F: \alpha \simeq_{p} \beta$. There is a quotient map $q: I \times I \rightarrow D^{2}$ that collapses $\{0\} \times I$ to $(-1,0)$ and $\{1\} \times I$ to $(1,0)$; more precisely, we can define q by $q(t, s)=(\cos (\pi(1-t)), \sin (\pi(1-t)) \sin (\pi(1 / 2-s)))$. Since F is constant on $q^{-1}(-1,0)=\{0\} \times I$ and $q^{-1}(1,0)=\{1\} \times I$, there is an induced map $\bar{F}: D^{2} \rightarrow X$. To check that \bar{F} extends f, we have $\bar{F}(\cos (\pi(1-t)), \sin (\pi(1-t)))=\bar{F} \circ q(t, 0)=$ $F(t, 0)=\alpha(t)=f(\cos (\pi(1-t)), \sin (\pi(1-t)))$ and $\bar{F}(\cos (\pi(1-t)),-\sin (\pi(1-$ $t))=\bar{F} \circ q(t, 1)=F(t, 1)=\beta(t)=f(\cos (\pi(1-t)),-\sin (\pi(1-t)))$.
Conversely, suppose that every map from S^{1} to X extends to D^{2}. Suppose that α and β are paths from x_{0} to x_{1} in X. Define $f: S^{1} \rightarrow X$ by $f(\cos (\pi(1-$ $t)), \sin (\pi(1-t)))=\alpha(t)$ and $f(\cos (\pi(1-t)), \sin (-\pi(1-t)))=\beta(t)$ for $0 \leq$ $t \leq 1$; this is well-defined since $f(\cos (\pi(1-0)), \sin (\pi(1-0)))=\alpha(0)=\beta(0)=$ $f(\cos (\pi(1-0)), \sin (\pi(1-0)))$ and $f(\cos (\pi(1-1)), \sin (\pi(1-1)))=\alpha(1)=\beta(1)=$ $f(\cos (\pi(1-0)), \sin (-\pi(1-0)))$ (and is continuous by gluing on locally finite closed covers). Let $F: D^{2} \rightarrow X$ be an extension of f. For the quotient map $q: I \times I \rightarrow D^{2}$ given above, it is straightforward to check that $q \circ F: \beta \simeq_{p} \alpha$.
21. Prove that a path-connected space X is simply-connected if and only if $\pi_{1}\left(X, x_{0}\right)=\{1\}$ for every choice of basepoint in X.

Assume first that X is simply-connected. Let $\langle\alpha\rangle \in \pi_{1}\left(X, x_{0}\right)$. Then α and $c_{x_{0}}$ are both loops at x_{0}, so since X is simply-connected, they are path-homotopic. Therefore $\langle\alpha\rangle=\left\langle c_{x_{0}}\right\rangle$, so $\pi_{1}\left(X, x_{0}\right)$ has only one element.
Conversely, assume that $\pi_{1}\left(X, x_{0}\right)=\{1\}$ for each x_{0}. Suppose that α and β are paths from x_{0} to x_{1} in X. Then $\alpha * \bar{\beta}$ is a loop at x_{0}, and sine $\pi_{1}\left(X, x_{0}\right)$ has only one element, $\alpha * \bar{\beta} \simeq_{p} c_{x_{0}}$. Using properties of path homotopy developed in class, we have $\alpha \simeq_{p} \alpha * c_{x_{1}} \simeq_{p} \alpha * \bar{\beta} * \beta \simeq_{p} c_{x_{0}} * \beta \simeq_{p} \beta$.
22. Prove that any contractible space is simply-connected.

Let X be contractible, so that there is a homotopy $H: i d_{X} \simeq c_{x_{0}}$ for some constant map $c_{x_{0}}$. To show that X is path-connected, let $x \in X$. Then $\alpha(t)=H(x, t)$ is a path in X from x to x_{0}, so X has only one path component. To show that X is simply-connected, let $f: S^{1} \rightarrow X$ be given. We have $f=i d_{X} \circ f \simeq c_{x_{0}} \circ f$, which is constant. By problem $\# 7, f$ extends to $C\left(S^{1}\right)$, which is homeomorphic to D^{2}. By problem $\# 20$, this shows that X is simply-connected.

