Math 5863 homework

- 19. (2/22) Prove that two paths $\alpha, \beta \colon I \to \mathbb{R}^n$ are path-homotopic if and only if they have the same starting point and the same ending point.
- 20. (2/22) Let X be a path-connected space. We say that X is simply-connected if every two paths in X that have the same starting point and same ending point are pathhomotopic. Prove that X is simply-connected if and only if every map from S^1 to X extends to a map from D^2 to X. Hint: Use the quotient map from $I \times I$ to D^2 that maps $\{0\} \times I$ to -1 and $\{1\} \times I$ to 1. For sufficiency, given a map from S^1 to X let α be its restriction to the upper half-circle and let β be its restriction to the bottom half-circle.
- 21. (2/22) Prove that a path-connected space X is simply-connected if and only if $\pi_1(X, x_0) = \{1\}$ for every choice of basepoint in X.
- 22. (2/22) Prove that any contractible space is simply-connected.
- 23. (3/1) Let G be a group. For an element g group G, define conjugation by g to be the function $\mu(g): G \to G$ that sends x to gxg^{-1} .
 - 1. Check that $\mu(1) = id_G$ and $\mu(g_1g_2) = \mu(g_1)\mu(g_2)$. Deduce that $\mu(g)$ is an isomorphism of G.
 - 2. Define $\operatorname{Aut}(G)$ to be the set of automorphisms of G. Check that $\operatorname{Aut}(G)$ is a group under the operation of composition.
 - 3. Define Inn(G) to be the set of inner automorphisms of G. Check that Inn(G) is a normal subgroup of Aut(G).
- 24. (3/1) Let $p_1: X \times Y \to X$ and $p_2: X \times Y \to Y$ denote the projections. Show that $(p_1)_{\#} \times (p_2)_{\#}: \pi_1(X \times Y, (x_0, y_0)) \to \pi_1(X, x_0) \times \pi_1(Y, y_0)$ is an isomorphism.
- 25. (3/1) Let x_0 and x_1 be two points in the same path-component of X. For a path $\gamma: I \to X$ from x_0 to x_1 , define $h_\gamma: \pi_1(X, x_1) \to \pi_1(X, x_0)$ by $h_\gamma(\langle \alpha \rangle) = \langle \gamma * \alpha * \overline{\gamma} \rangle$.
 - 1. Show that h_{γ} is a well-defined homomorphism.
 - 2. Show that if $\gamma(1) = \tau(0)$, then $h_{\gamma*\tau} = h_{\gamma}h_{\tau}$.
 - 3. Show that if γ is a loop at x_1 , then $h_{\gamma} = \mu(\langle \gamma \rangle)$.
 - 4. Show that if $\gamma_1 \simeq_p \gamma_2$, then $h_{\gamma_1} = h_{\gamma_2}$. Deduce that h_{γ} is an isomorphism with inverse $h_{\overline{\gamma}}$. Thus, $\pi_1(X, x_0)$ and $\pi_1(X, x_1)$ are isomorphic as long as x_0 and x_1 are in the same path component of X.
 - 5. Show that if β is another path from x_0 to x_1 , then $h_{\beta}^{-1} \circ h_{\alpha} = \mu(\langle \overline{\beta} * \alpha \rangle)$.
 - 6. Deduce that if $\pi_1(X, x_1)$ is abelian, then $h_\alpha \colon \pi_1(X, x_1) \to \pi_1(X, x_0)$ is independent of the choice of path α from x_0 to x_1 .

As a consequence of the previous problem, all choices of α give the same isomorphism h_{α} when X is path-connected and $\pi_1(X, x_1)$ is abelian. That is, there is a way to identify $\pi_1(X, x_0)$ with $\pi_1(X, x_1)$ that is independent of all choices, so in this situation, one may safely write $\pi_1(X)$.