Math 5863 homework solutions

8. (2/1) Suppose that $h_{0}, h_{1}: X \rightarrow Y$ are isotopic. Prove that if $g: Y \rightarrow Z$ is a homeomorphism, then $g \circ h_{0} \simeq g \circ h_{1}$. Prove that if $k: Z \rightarrow X$ is a homeomorphism, then $h_{0} \circ k \simeq h_{1} \circ k$.

Let h_{t} be the isotopy. Each $g \circ h_{t}$ is a homeomorphism, so $g \circ h_{t}$ defines an isotopy from $g \circ h_{0}$ to $g \circ h_{1}$, and similarly $h_{t} \circ k$ defines an isotopy from $h_{0} \circ k$ to $h_{1} \circ k$. If one wishes to worry about the continuity, just note that the isotopy $g \circ h_{t}$ is the composition of the map $X \times I \rightarrow Y \times I$, defined by sending (x, t) to $\left(h_{t}(x), t\right)$ (which is continuous since h_{t} is an isotopy) and the map $g \circ \pi_{1}: Y \times I \rightarrow Z$.
9. (2/1) An imbedding $j: I \rightarrow I$ is called order-preserving if $j(0)<j(1)$, otherwise it is called order-reversing.

1. Prove that if j is order-preserving, then $j\left(x_{1}\right)<j\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.

Suppose that $x_{1}<x_{2}$ but $j\left(x_{1}\right)>j\left(x_{2}\right)$. If $j(0)<j\left(x_{2}\right)$, then the Intermediate Value Theorem applied to the interval $\left[0, x_{1}\right]$ produces $c<x_{1}$ with $j(c)=j\left(x_{2}\right)$. If $j\left(x_{2}\right)<j(0)<j\left(x_{1}\right)$, then the Intermediate Value Theorem applied to the interval $\left[x_{1}, x_{2}\right]$ produces $c>x_{1}$ with $j(0)=j(c)$. If $j\left(x_{1}\right)<j(0)$, then the Intermediate Value Theorem applied to the interval $\left[x_{2}, 1\right]$ produces $c>x_{2}$ with $j\left(x_{1}\right)=j(c)$. In any case, we contradict the fact that j is an imbedding.
2. Prove that there are exactly two isotopy classes of imbeddings of I into I, by showing that $j_{0}, j_{1}: I \rightarrow I$ are isotopic if and only if they are both order-preserving or both order-reversing.

Suppose first that j_{0} and j_{1} are both order-preserving. Define $j: I \times I \rightarrow I$ by $j(x, t)=(1-t) j_{0}(t)+t j_{1}(t)$. Since j is clearly continuous, and $j(x, 0)=j(0)$ and $j(x, 1)=j(1)$, it suffices to show that each j_{t} is injective. Then, since I is compact Hausdorff, we will know automatically that each j_{t} is an imbedding, so j will be an isotopy of imbeddings from j_{0} to j_{1}.
By the previous part of the problem, we know that if $x_{1}<x_{2}$, then $j_{0}\left(x_{1}\right)<$ $j_{0}\left(x_{2}\right)$ and $j_{1}\left(x_{1}\right)<j_{1}\left(x_{2}\right)$. Suppose that for some t and some $x_{1}<x_{2}$ we have $j_{t}\left(x_{1}\right)=j_{t}\left(x_{2}\right)$. Using the definition of j_{t} shows that $(1-t)\left(j_{0}\left(x_{2}\right)-j_{0}\left(x_{1}\right)\right)=$ $-t\left(j_{1}\left(x_{2}\right)-j_{1}\left(x_{1}\right)\right)$. This is a contradiction, since the left-hand side is positive and the right-hand side is negative.
Suppose now that j_{0} and j_{1} are both order-reversing. Let $\rho: I \rightarrow I$ be the reflection homeomorphism defined by $\rho(x)=1-x$. Then $j_{0} \circ \rho$ and $j_{1} \circ \rho$ are order-preserving, so the previous case shows that $j_{0} \circ \rho$ and $j_{1} \circ \rho$ are isotopic. Problem 8 shows that $j_{0} \circ \rho \circ \rho$ and $j_{1} \circ \rho \circ \rho$ are isotopic. Since $\rho \circ \rho=i d_{I}$, this shows that j_{0} and j_{1} are isotopic.
Finally, we must show that if j_{0} is order-preserving and j_{1} is order-reversing, then j_{0} is not isotopic to j_{1}. If j_{t} were an isotopy, then the Intermediate Value Theorem applied to the function $j_{t}(0)-j_{t}(1)$ produces a t_{0} with $j_{t_{0}}(0)=j_{t_{0}}(1)$, contradicting the fact that $j_{t_{0}}$ is an imbedding.
10. (2/1) Prove the Disk Lemma for $n=1$ and $M=I$. That is, prove that if $j_{1}, j_{2}: I \rightarrow I$ are imbeddings with image in the interior of I, then j_{1} is ambiently isotopic to either j_{2} or $j_{2} \circ \rho$. Hint: this follows quickly from the fact that any two homeomorphisms of I are isotopic. Compose j_{1} and/or j_{2} by ρ to assume that both are order preserving. Extend the homeomorphism $j_{2} \circ j_{1}^{-1}: j_{1}(I) \rightarrow j_{2}(I)$ to an order-preserving homeomorphism $h: I \rightarrow I$, by using linear maps on $\overline{I-j_{1}(I)}$. Now make use of the fact that $i d_{I}$ and h are isotopic.

Assume first that both j_{1} and j_{2} are order-preserving. We have a homeomorphism $j_{2} \circ j_{1}^{-1}: j_{1}(I) \rightarrow j_{2}(I)$. We extend this to a homeomorphism $h: I \rightarrow I$ using orderpreseving linear homeomorphisms from $\left[0, j_{1}(0)\right]$ to $\left[0, j_{2}(0)\right]$ and from $\left[j_{1}(1), 1\right]$ to $\left[j_{2}(1), 1\right]$. Explicitly, for $x \in\left[0, j_{1}(0)\right]$ put $h(x)=x j_{1}(0) / j_{2}(0)$ (using the fact that both $\left.j_{1}(0), j_{2}(0)>0\right)$, and for $x \in\left[j_{1}(1), 1\right]$ put $h(x)=1-j_{2}(1)+\left(x-j_{1}(1)\right) /\left(1-j_{1}(1)\right)$ (using the fact that $\left.j_{1}(1), j_{2}(1)<1\right)$. Since h is an order-preserving homeomorphism, there is an isotopy H from $i d_{I}$ to h. Then, $H_{0}=i d_{I}$ and $H_{1} \circ j_{1}=h \circ j_{1}=j_{2} \circ j_{1}^{-1} \circ j_{1}=j_{2}$, showing that j_{1} and j_{2} are ambiently isotopic.
11. (2/1) A compact (connected) surface F is called planar if $F \neq S^{2}$ and F can be imbedded into S^{2}. Show that if F_{1} and F_{2} are planar, then the connected sum $F_{1} \# F_{2}$ is planar. Hint: Let $D_{1} \subset F_{1}$ and $D_{2} \subset F_{2}$ be admissible disks. Use the Disk Lemma to show that there is an imbedding of F_{1} in S^{2} that carries D_{1} to the upper hemisphere, and there is an imbedding of F_{2} in S^{2} that carries D_{2} to the lower hemisphere.

Fix imbeddings $f_{1}: F_{1} \rightarrow S^{2}$ and $f_{2}: F_{2} \rightarrow S^{2}$. Let $i_{+}: D^{2} \rightarrow S^{2}$ be the imbedding $i_{+}(x, y)=\left(x, y, \sqrt{1-x^{2}-y^{2}}\right)$, and let $i_{-}: D^{2} \rightarrow S^{2}$ be the imbedding $i_{-}(x, y)=$ $\left(x, y,-\sqrt{1-x^{2}-y^{2}}\right)$. Finally, let $i_{1}: D^{2} \rightarrow F_{1}$ and $i_{2}: D^{2} \rightarrow F_{2}$ be any (admissible) imbeddings. By the Disk Lemma, there are ambient isotopies J_{1} and J_{2} of S^{2} with $\left(J_{1}\right)_{1} \circ f_{1} \circ i_{1}=i_{+} \circ \rho^{\epsilon_{1}}$ and $\left(J_{2}\right)_{1} \circ f_{2} \circ i_{2}=i_{-} \circ \rho^{\epsilon_{2}}$, where each of ϵ_{1} and ϵ_{2} is either 0 or 1. Denote $\left(J_{i}\right)_{1} \circ f_{i}$ by k_{i}. Notice that $i_{+}\left(D^{2}\right)=i_{+} \circ \rho^{\epsilon_{1}}\left(D^{2}\right)=k_{1}\left(i_{1}\left(D^{2}\right)\right)$, so $i_{+}\left(D^{2}\right)$ is in the interior of $k_{1}\left(F_{1}\right)$, and similarly $i_{-}\left(D^{2}\right)$ is in the interior of $k_{2}\left(F_{2}\right)$.
We may define $F_{1} \# F_{2}$ using any (admissible) imbeddings of D^{2} into F_{1} and F_{2}, so assume it is defined using the imbeddings $j_{1}=k_{1}^{-1} \circ i_{+}: D^{2} \rightarrow F_{1}$ and $j_{2}=k_{2}^{-1} \circ$ $i_{-}: D^{2} \rightarrow F_{2}$. That is, let $F_{1} \# F_{2}$ be the identification space obtained from the union of $F_{1}-j_{1}\left(\operatorname{int}\left(D^{2}\right)\right)$ and $F_{1}-j_{2}\left(\operatorname{int}\left(D^{2}\right)\right)$ by identifying $j_{1}(p)$ with $j_{2}(p)$ for each $p \in \partial D^{2}$. Now, $F_{1} \# F_{2} \neq S^{2}$, for if so then when we cut S^{2} along ∂D^{2}, we obtain two D^{2} 's, and then each of F_{1} and F_{2} would have to be S^{2}. It remains to show that $F_{1} \# F_{2}$ can be imbedded in S^{2}. Define $f: F_{1} \# F_{2} \rightarrow S^{2}$ by $f(z)=k_{1}(z)$ for $z \in F_{1}-j_{1}\left(\operatorname{int}\left(D^{2}\right)\right)$ and $f(z)=k_{2}(z)$ for $z \in F_{2}-j_{2}\left(\operatorname{int}\left(D^{2}\right)\right)$. For $p \in \partial D^{2}$, we have $f\left(j_{1}(p)\right)=k_{1} \circ j_{1}(p)=$ $k_{1} \circ k_{1}^{-1} \circ i_{+}(p)=i_{+}(p)$ and $f\left(j_{2}(p)\right)=k_{2} \circ j_{2}(p)=k_{2} \circ k_{2}^{-1} \circ i_{-}(x)=i_{-}(p)$. Since $i_{+}(p)=i_{-}(p)$ for $p \in \partial D^{2}$, this shows f is well-defined. It is continuous by gluing on closed sets, and is injective by construction. Since it is a continuous injection from a compact space into a Hausdorff space, it is an imbedding. Therefore $F_{1} \# F_{2}$ is planar.

