Math 5863 homework solutions

Instructions: All problems should be prepared for presentation at the problem sessions. If a problem has a due date listed, then it should be written up formally and turned in on the due date.

4. Prove that the relation \simeq of being homotopic is an equivalence relation on the set of continuous maps from X to Y.

For $f: X \to Y$, putting F(x,t) = f(x) defines a homotopy from f to f. If $F: f \simeq g$, define $\overline{F}: X \times I \to Y$ by $\overline{F}(x,t) = F(x,1-t)$, then $\overline{F}(x,0) = F(x,1) = g(x)$ and similarly $\overline{F}(x,1) = f(x)$, so $\overline{F}: g \simeq f$. Suppose that $F: f \simeq g$ and $G: g \simeq h$. Define $F*G: X \times I \to Y$ by F*G(x,t) = F(x,2t) if $0 \le t \le 1/2$ and F*G(x,t) = F(x,2t-1)if $1/2 \le t \le 1$. By patching of continuous functions on the closed sets $X \times [0,1/2]$ and $X \times [1/2,1], F*G$ is continuous, and $F*G: f \simeq h$.

5. Let X be a one-point space, $X = \{*\}$. Prove that the homotopy classes of continuous maps from X to Y correspond bijectively to the path components of Y.

For $f: X \to Y$ denote the homotopy class of f by [f], and for $y \in Y$ denote the path component of y by $\langle y \rangle$. Define Φ from the set of homotopy classes of maps from X to Y to the set of path components of Y by $\Phi([f]) = \langle f(*) \rangle$. This is well-defined, since if $F: f \simeq g$, then sending t to F(*, t) is a path from f(*) to g(*), so $\langle f(*) \rangle = \langle g(*) \rangle$. For each $y \in Y$, the function defined by f(*) = y is continuous, since X has the discrete topology, and $\Phi([f]) = \langle y \rangle$, so Φ is surjective. If $\Phi([f]) = \Phi([g])$, then there is a path α from f(*) to g(*), and putting $F(x, t) = \alpha(t)$ defines a homotopy from f to g, so Φ is injective.

6. Suppose that $f_0, f_1: X \to Y$ are homotopic. Prove that if $g: Y \to Z$ is a continuous map, then $g \circ f_0 \simeq g \circ f_1$. Prove that if $k: Z \to X$ is a continuous map, then $f_0 \circ k \simeq f_1 \circ k$.

Let $F: f_0 \simeq f_1$ be a homotopy. Then $g \circ F: X \times I \to Z$ is a homotopy from $g \circ f_0$ to $g \circ f_1$, and the map $G: Z \times I \to Y$ defined by G(x,t) = F(k(x),t) is a homotopy from $f_0 \circ k$ to $f_1 \circ k$ (G is continuous since it is the composition of the map $k \times id_I: Z \times I \to X \times I$ and the original homotopy F).

7. Recall that the *cone* on X, C(X), is the quotient space obtained by identifying the subspace $X \times \{1\}$ of $X \times I$ to a point. We identify X with the subspace $X \times \{0\}$ of C(X), by letting x correspond to the point [(x, 0)]. Let $f: X \to Y$ be a continuous map. Prove that f is homotopic to a constant map if and only if there exists a continuous map $g: C(X) \to Y$ for which $g|_X = f$.

Let $H: f \simeq c$ be a homotopy from f to a constant map $c: X \to Y$, and let $q: X \times I \to C(X)$ be the quotient map. Since H(x, 1) = c(x) = H(y, 1) for every $x, y \in X$, H is constant on the point preimages of q. By the universal property of the quotient topology, H induces a continuous map $g: C(X) \to Y$, and g([x, 0]) = H(x, 0) = f(x). Conversely, if $g: C(X) \to Y$ exists define $H: X \times I \to Y$ by $H = g \circ q$, then H(x, 0) = g([x, 0]) = f(x) and H(x, 1) = g([x, 1]) = c(x) for all x.