Math 5863 homework

8. (2/1) Suppose that $h_{0}, h_{1}: X \rightarrow Y$ are isotopic. Prove that if $g: Y \rightarrow Z$ is a homeomorphism, then $g \circ h_{0}$ is isotopic to $g \circ h_{1}$. Prove that if $k: Z \rightarrow X$ is a homeomorphism, then $h_{0} \circ k$ is isotopic to $h_{1} \circ k$.
9. (2/1) An imbedding $j: I \rightarrow I$ is called order-preserving if $j(0)<j(1)$, otherwise it is called order-reversing.
10. Prove that if j is order-preserving, then $j\left(x_{1}\right)<j\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.
11. Prove that there are exactly two isotopy classes of imbeddings of I into I, by showing that $j_{0}, j_{1}: I \rightarrow I$ are isotopic if and only if they are both order-preserving or both order-reversing.
12. $(2 / 1)$ Prove the Disk Lemma for $n=1$ and $M=I$. That is, prove that if $j_{1}, j_{2}: I \rightarrow I$ are imbeddings with image in the interior of I, then j_{1} is ambiently isotopic to either j_{2} or $j_{2} \circ \rho$. Hint: this follows quickly from the fact that any two homeomorphisms of I are isotopic. Compose j_{1} and/or j_{2} by ρ to assume that both are order preserving. Extend the homeomorphism $j_{2} \circ j_{1}^{-1}: j_{1}(I) \rightarrow j_{2}(I)$ to an order-preserving homeomorphism $h: I \rightarrow I$, by using linear maps on $\overline{I-j_{1}(I)}$. Now make use of the fact that $i d_{I}$ and h are isotopic.
13. (2/1) A compact (connected) surface F is called planar if $F \neq S^{2}$ and F can be imbedded into S^{2}. Show that if F_{1} and F_{2} are planar, then the connected sum $F_{1} \# F_{2}$ is planar. Hint: Let $D_{1} \subset F_{1}$ and $D_{2} \subset F_{2}$ be admissible disks. Use the Disk Lemma to show that there is an imbedding of F_{1} in S^{2} that carries D_{1} to the upper hemisphere, and there is an imbedding of F_{2} in S^{2} that carries D_{2} to the lower hemisphere.
14. (2/8) Let F and G be compact connected 2 -manifolds with nonempty boundary. Let α be an arc (an imbedded copy of I) in ∂F, and β an arc in ∂G. Define the boundaryconnected sum of F and G to be the surface $F \not G G$ obtained from $F \cup G$ by identifying α and β by a homeomorphism. Draw pictures to explain why $\left(F \# D^{2}\right) \natural\left(G \# D^{2}\right)=$ $F \# G \# D^{2}$.
15. (2/8) Use the previous problem to give a quick explanation of why attaching a twisted 1-handle to a boundary circle of M produces $M \# P$, and why attaching two untwisted 1-handles with alternating ends to a boundary circle of M produces $M \# T$.
