Math 5863 homework

51. (highly optional problem) Let G be the group $\operatorname{Isom}_{+}\left(\mathbb{R}^{2}\right)$ of orientation-preserving isometries of the plane \mathbb{R}^{2}. Let H be the subgroup of G consisting of translations by vectors of the form (m, n), where m and n are integers, and as usual let T be the subgroup consisting of all translations.
52. Show that H is normal in T and T is normal in G, but that H is not normal in G.
53. Let H be the subgroup of G consisting of translations by vectors of the form (m, n), where m and n are integers. Verify that $T \subseteq N(H)$.
54. It is true that T has index 4 in $N(H)$. Find coset representatives for the four cosets. Hint: Remember that $R_{\theta} \circ T_{v} \circ R_{-\theta}=T_{R_{\theta}(v)}$. So if R_{θ} is in the normalizer of H, then R_{θ} must take integer vectors to integer vectors.
