Math 5863 homework

- 51. (highly optional problem) Let G be the group $\operatorname{Isom}_+(\mathbb{R}^2)$ of orientation-preserving isometries of the plane \mathbb{R}^2 . Let H be the subgroup of G consisting of translations by vectors of the form (m, n), where m and n are integers, and as usual let T be the subgroup consisting of all translations.
 - 1. Show that H is normal in T and T is normal in G, but that H is not normal in G.
 - 2. Let *H* be the subgroup of *G* consisting of translations by vectors of the form (m, n), where *m* and *n* are integers. Verify that $T \subseteq N(H)$.
 - 3. It is true that T has index 4 in N(H). Find coset representatives for the four cosets. Hint: Remember that $R_{\theta} \circ T_v \circ R_{-\theta} = T_{R_{\theta}(v)}$. So if R_{θ} is in the normalizer of H, then R_{θ} must take integer vectors to integer vectors.