Math 5863 homework

- 39. (4/5) Let X, Y, and Z be spaces, with Y locally compact Hausdorff, and give all sets of continuous functions the C-O topology. Define the composition function $C(f,g): \mathcal{C}(X,Y) \times \mathcal{C}(Y,Z) \to \mathcal{C}(X,Z)$ by $C(f,g) = g \circ f$. Prove that C is continuous. (Take as known the fact that if K is a compact subset of a locally compact Hausdorff space, and W is an open set containing K, then there exists an open set V with \overline{V} compact and $K \subseteq V \subseteq \overline{V} \subseteq W$.)
- 40. (4/14) Suppose that $f: (X, x_0) \to (Y, y_0)$ and $g: (X, x_0) \to (Y, y_1)$ are maps, and $H: f \simeq g$. Define a path $\gamma: I \to Y$ by $\gamma(t) = H(x_0, t)$. Show informally that $f_{\#} = h_{\gamma} \circ g_{\#}$. Deduce that if $y_0 = y_1$, then $f_{\#}$ and $g_{\#}$ differ by an inner automorphism of $\pi_1(Y, y_0)$.
- 41. (4/14) Prove that a space X is contractible if and only if X is homotopy equivalent to a space with one point.
- 42. (4/14) Let $X = S^1 \times D^2$, let $p_0 = (1,0) \in S^1$. Let C_1 be the circle consisting of all (θ, p_0) , and let C_2 be the circle consisting of all (p_0, θ) . Prove that the inclusion $C_1 \to X$ is a homotopy equivalence, but the inclusion $C_2 \to X$ is not a homotopy equivalence.
- 43. (4/14) Let $p: E \to B$ be a covering map, with B path-connected.
 - 1. Prove that if $b_0, b_1 \in B$, then $p^{-1}(b_0)$ and $p^{-1}(b_1)$ have the same cardinality. Hint: For a path α in B, define $\Phi_{\alpha}: p^{-1}(\alpha(0)) \to p^{-1}(\alpha(1))$ as follows. For $e \in p^{-1}(\alpha(0))$, let $\tilde{\alpha}$ be the lift of α starting at e, and put $\Phi(e) = \tilde{\alpha}(1)$. Prove that $\Phi_{\overline{\alpha}} \circ \Phi_{\alpha}$ is the identity on $p^{-1}(\alpha(0))$. Deduce that Φ_{α} is a bijection.
 - 2. Prove that if E is compact, then p is finite-to-one.