Math 5863 homework

- 1. (1/18) The Klein bottle K can be constructed from two annuli A_1 and A_2 by identifying their boundaries in a certain way. For each of the three descriptions of K discussed in class (two Möbius bands with boundaries identified, the square with certain identifications on its boundary, and $S^1 \times I$ with the two ends identified), make a drawing showing where A_1 and A_2 appear in K.
- 2. (1/18) Two surfaces F_1 and F_2 can be constructed as follows. Start with $S^1 \times I$, and remove the interior of a small disk D from the interior of $S^1 \times I$. For F_1 , identify each $(\theta, 0)$ with $(\theta, 1)$ and identify each point of ∂D with its antipodal point (that is, if ∂D is regarded as S^1 , then v is identified with -v). For F_2 , identify each $(\theta, 0)$ with $(\overline{\theta}, 1)$ and identify each point of ∂D with its antipodal point.
 - 1. Make drawings illustrating each of F_1 and F_2 . Notice that both are closed surfaces.
 - 2. Find three disjoint Möbius bands imbedded in F_1 .
 - 3. Find three disjoint Möbius bands imbedded in F_2 .

Actually, F_1 and F_2 are homeomorphic, although this may not be very easy to see.

- 3. (1/18) Let M and N be *n*-dimensional manifolds, and let U be an open subset of M. Suppose that $f: U \to N$ is a continuous injection. Prove that f takes open sets in U to open sets in N.
- 4. (1/25) Prove that the relation \simeq of being homotopic is an equivalence relation on the set of continuous maps from X to Y.
- 5. (1/25) Let X be a one-point space, $X = \{*\}$. Prove that the homotopy classes of continuous maps from X to Y correspond bijectively to the path components of Y.
- 6. (1/25) Suppose that $f_0, f_1: X \to Y$ are homotopic. Prove that if $g: Y \to Z$ is a continuous map, then $g \circ f_0 \simeq g \circ f_1$. Prove that if $k: Z \to X$ is a continuous map, then $f_0 \circ k \simeq f_1 \circ k$.
- 7. (1/25) Recall that the *cone* on X, C(X), is the quotient space obtained by identifying the subspace $X \times \{1\}$ of $X \times I$ to a point. We identify X with the subspace $X \times \{0\}$ of C(X), by letting x correspond to the point [(x, 0)]. Let $f: X \to Y$ be a continuous map. Prove that f is homotopic to a constant map if and only if there exists a continuous map $g: C(X) \to Y$ for which $g|_X = f$.