Math 5863 homework

1. $(1 / 18)$ The Klein bottle K can be constructed from two annuli A_{1} and A_{2} by identifying their boundaries in a certain way. For each of the three descriptions of K discussed in class (two Möbius bands with boundaries identified, the square with certain identifications on its boundary, and $S^{1} \times I$ with the two ends identified), make a drawing showing where A_{1} and A_{2} appear in K.
2. $(1 / 18)$ Two surfaces F_{1} and F_{2} can be constructed as follows. Start with $S^{1} \times I$, and remove the interior of a small disk D from the interior of $S^{1} \times I$. For F_{1}, identify each $(\theta, 0)$ with $(\theta, 1)$ and identify each point of ∂D with its antipodal point (that is, if ∂D is regarded as S^{1}, then v is identified with $\left.-v\right)$. For F_{2}, identify each $(\theta, 0)$ with $(\bar{\theta}, 1)$ and identify each point of ∂D with its antipodal point.
3. Make drawings illustrating each of F_{1} and F_{2}. Notice that both are closed surfaces.
4. Find three disjoint Möbius bands imbedded in F_{1}.
5. Find three disjoint Möbius bands imbedded in F_{2}.

Actually, F_{1} and F_{2} are homeomorphic, although this may not be very easy to see.
3. $(1 / 18)$ Let M and N be n-dimensional manifolds, and let U be an open subset of M. Suppose that $f: U \rightarrow N$ is a continuous injection. Prove that f takes open sets in U to open sets in N.
4. $(1 / 25)$ Prove that the relation \simeq of being homotopic is an equivalence relation on the set of continuous maps from X to Y.
5. (1/25) Let X be a one-point space, $X=\{*\}$. Prove that the homotopy classes of continuous maps from X to Y correspond bijectively to the path components of Y.
6. (1/25) Suppose that $f_{0}, f_{1}: X \rightarrow Y$ are homotopic. Prove that if $g: Y \rightarrow Z$ is a continuous map, then $g \circ f_{0} \simeq g \circ f_{1}$. Prove that if $k: Z \rightarrow X$ is a continuous map, then $f_{0} \circ k \simeq f_{1} \circ k$.
7. $(1 / 25)$ Recall that the cone on $X, C(X)$, is the quotient space obtained by identifying the subspace $X \times\{1\}$ of $X \times I$ to a point. We identify X with the subspace $X \times\{0\}$ of $C(X)$, by letting x correspond to the point $[(x, 0)]$. Let $f: X \rightarrow Y$ be a continuous map. Prove that f is homotopic to a constant map if and only if there exists a continuous map $g: C(X) \rightarrow Y$ for which $\left.g\right|_{X}=f$.

