Mathematics 1823-010
Examination III Form B
April 20, 2001

Name (please print)
Student Number

Discussion Section (please circle day and time): (1)
We 2:30 We 3:30 Th 9:00 Th 10:30 Th 12:00 Th 1:30
I. Let $f(x)=\frac{x}{x+2}$ on the domain $1 \leq x \leq 4$ (i. e. the closed interval [1,4]). Find all values of c that satisfy (7) the conclusion of the Mean Value Theorem for this function on this interval.
II. For the function $f(x)=\frac{\left(1-x^{2}\right)(1-x)}{x^{3}}$, carry out the following.
(7)

1. Determine all vertical asymptotes of the graph of $f(x)$.
2. Determine all horizontal asymptotes of the graph of $f(x)$.
3. Determine all values of x at which $f(x)$ changes sign.
III. Calculate the following limits. (To obtain credit, you must show your reasoning, not just guess the limit (10) by computing values on a calculator.)
4. $\lim _{x \rightarrow-\infty} \frac{(1-x)(2+x)}{(1+2 x)(2-3 x)}$
5. $\lim _{x \rightarrow \infty} \sqrt{x^{2}+x}-x$
IV. State the Mean Value Theorem.
(4)
V. Let $f(x)$ be a function and let a be an x-value in the domain of $f(x)$. Define what it means to say that f (4) has a local maximum at $x=a$, and define what it means to say that f has an absolute maximum at $x=a$.
VI. A certain function $f(x)$ has $f^{\prime}(x)=2 x^{2}-6$. Carry out the following.
(6)
6. Find all critical points of f.
7. By examining $f^{\prime}(x)$, find all local maxima of f.
8. By examining $f^{\prime}(x)$, find all local minima of f.
VII. A certain function $g(x)$ has $g^{\prime \prime}(x)=\frac{x}{x+5}$. By examining $g^{\prime \prime}(x)$, find where g is concave up, and where it (3) is concave down.
VIII. The first coordinate system below shows the graph of a function $f(x)$. On the second coordinate system, (5) sketch the graph of its derivative $f^{\prime}(x)$.

IX. The coordinate system shown here is the graph of a certain differentiable function which has roots at $x=2$
(6) and $x=6$, and has a local maximum at $x=1$ and a local minimum at $x=4$. For each of the choices of the value of x_{1} given below, draw (if possible) the appropriate tangent lines and the points x_{2} and x_{3} that result when Newton's method is carried out using the starting value x_{1}. For each choice of x_{1}, tell what the iteration would do if continued. The problem is already worked out for $x_{1}=3$, as an example.

Example: $x_{1}=3$
The iteration would converge to the root $x=2$.

1. $x_{1}=0$
2. $x_{1}=1$
3. $x_{1}=5$
