Mathematics 182	3-010
Examination III	Form B
April 20, 2001	

Name (please print)

Student Number

Discussion Section (please circle day and time): (1)
We 2:30 We 3:30 Th 9:00 Th 10:30 Th 12:00 Th 1:30

I. Let $f(x) = \frac{x}{x+2}$ on the domain $1 \le x \le 4$ (i. e. the closed interval [1,4]). Find all values of c that satisfy the conclusion of the Mean Value Theorem for this function on this interval.

II. For the function
$$f(x) = \frac{(1-x^2)(1-x)}{x^3}$$
, carry out the following. (7)

1. Determine all vertical asymptotes of the graph of f(x).

2. Determine all horizontal asymptotes of the graph of f(x).

3. Determine all values of x at which f(x) changes sign.

III. Calculate the following limits. (To obtain credit, you must show your reasoning, not just guess the limit(10) by computing values on a calculator.)

1.
$$\lim_{x \to -\infty} \frac{(1-x)(2+x)}{(1+2x)(2-3x)}$$

$$2. \lim_{x \to \infty} \sqrt{x^2 + x} - x$$

IV. State the Mean Value Theorem.

(4)

V. Let f(x) be a function and let a be an x-value in the domain of f(x). Define what it means to say that f has a local maximum at x = a, and define what it means to say that f has an absolute maximum at x = a.

- **VI.** A certain function f(x) has $f'(x) = 2x^2 6$. Carry out the following.
- (6)
 - 1. Find all critical points of f.

2. By examining f'(x), find all local maxima of f.

3. By examining f'(x), find all local minima of f.

VII. A certain function g(x) has $g''(x) = \frac{x}{x+5}$. By examining g''(x), find where g is concave up, and where it is concave down.

VIII. The first coordinate system below shows the graph of a function f(x). On the second coordinate system, (5) sketch the graph of its derivative f'(x).

IX. The coordinate system shown here is the graph of a certain differentiable function which has roots at x = 2 and x = 6, and has a local maximum at x = 1 and a local minimum at x = 4. For each of the choices of the value of x_1 given below, draw (if possible) the appropriate tangent lines and the points x_2 and x_3 that result when Newton's method is carried out using the starting value x_1 . For each choice of x_1 , tell what the iteration would do if continued. The problem is already worked out for $x_1 = 3$, as an example.

Example: $x_1 = 3$

The iteration would converge to the root x = 2.

1. $x_1 = 0$

2. $x_1 = 1$

3. $x_1 = 5$