Mathematics 1823-010
Examination II Form B
March 16, 2001

Name (please print)
Student Number
Discussion Section (please circle day and time):
We 2:30 We 3:30 Th 9:00 Th 10:30 Th 12:00 Th 1:30
I. Calculate the following things.
(20)

1. $\frac{d y}{d u}$ if $y=\frac{C u+D}{A u+B}$
2. $\frac{d y}{d x}$ if $y=\sqrt{x+\sqrt{x}}$
3. $f^{(2)}(x)$ if $f(x)=\cos (x) \sin (x)$
4. $(\text { blue } \circ \text { green })^{\prime}($ violet $)$ if green $($ violet $)=$ orange, green $^{\prime}($ violet $)=$ turquoise, blue $^{\prime}($ orange $)=$ yellow, green' $($ blue $($ violet $))=$ red, and blue' $($ violet $)=$ teal.
II. The figure below shows the tangent line to $f(x)$ at $x=a$.
(8)
5. On the figure, draw the linear part of the change of $f(x)$ between a and $a+\Delta x$. Give the expression for it in terms of f^{\prime}.
6. Let $\epsilon(\Delta x)$ denote the nonlinear part of the change of $f(x)$ between a and $a+\Delta x$. On the figure below, indicate where $\epsilon(\Delta x)$ would be. In the box below the diagram, finish writing down an equation that expresses the idea that "the nonlinear part of the change is small relative to Δx ".

$$
\lim _{\Delta x \rightarrow 0}
$$

III. The first coordinate system shows the graph of a function $f(x)$. On the second coordinate system, sketch (5) the graph of its derivative $f^{\prime}(x)$.

IV. As shown in this figure, a spotlight on the (9) ground shines on a wall 20 m away. A man 2 m tall walks from the spotlight toward the wall at a speed of $1.5 \mathrm{~m} / \mathrm{sec}$.

1. Let L be the length of the man's shadow and let x be his distance from the spotlight. Use similar triangles to write an equation that relates L to x.
2. Use the equation to calculate an equation that contains $\frac{d L}{d t}$.
3. At the moment when the man is 10 feet from the spotlight, how fast is the length of his shadow changing?
V. Determine the following derivatives.
(12)
4. $\frac{d y}{d x}$ if $\sin \left(y^{2}\right)=\sqrt{x}$ (use implicit differentiation)
5. $\frac{d}{d \theta}(\csc (\theta)+\tan (\theta)+\sec (\theta)+\cot (\theta)) \quad$ (do not calculate, give derivatives from memory)
