Mathematics 1823-010 Examination II Form B March 16, 2001 Name (please print)

Student Number

Discussion Section (please circle day and time): We 2:30 We 3:30 Th 9:00 Th 10:30 Th 12:00 Th 1:30

I. Calculate the following things. (20) 1. $\frac{dy}{du}$ if $y = \frac{Cu+D}{Au+B}$

2.
$$\frac{dy}{dx}$$
 if $y = \sqrt{x + \sqrt{x}}$

3. $f^{(2)}(x)$ if $f(x) = \cos(x)\sin(x)$

4. (blue \circ green)'(violet) if green(violet) = orange, green'(violet) = turquoise, blue'(orange) = yellow, green'(blue(violet)) = red, and blue'(violet) = teal.

- **II**. The figure below shows the tangent line to f(x) at x = a.
- (8)
 1. On the figure, draw the linear part of the change of f(x) between a and a + Δx. Give the expression for it in terms of f'.
 - 2. Let $\epsilon(\Delta x)$ denote the nonlinear part of the change of f(x) between a and $a + \Delta x$. On the figure below, indicate where $\epsilon(\Delta x)$ would be. In the box below the diagram, finish writing down an equation that expresses the idea that "the nonlinear part of the change is small relative to Δx ".

III. The first coordinate system shows the graph of a function f(x). On the second coordinate system, sketch (5) the graph of its derivative f'(x).

IV. As shown in this figure, a spotlight on the ground shines on a wall 20 m away. A man 2 m tall walks from the spotlight toward the wall at a speed of 1.5 m/sec.

1. Let L be the length of the man's shadow and let x be his distance from the spotlight. Use similar triangles to write an equation that relates L to x.

2. Use the equation to calculate an equation that contains $\frac{dL}{dt}$.

3. At the moment when the man is 10 feet from the spotlight, how fast is the length of his shadow changing?

- **V**. Determine the following derivatives.
- (12) 1. $\frac{dy}{dx}$ if $\sin(y^2) = \sqrt{x}$ (use implicit differentiation)

2. $\frac{d}{d\theta}(\csc(\theta) + \tan(\theta) + \sec(\theta) + \cot(\theta))$ (do not calculate, give derivatives from memory)