Mathematics 1823-010
Examination I Form B
February 16, 2001
Student Number
Discussion Section (please circle day and time):
We 2:30 We 3:30 Th 9:00 Th 10:30 Th 12:00 Th 1:30
I. Calculate the limit $\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}$.
(4)
II. Complete this statement of the Intermediate Value Theorem: Suppose that $f(x)$ is a continuous function (3) on the domain $a \leq x \leq b$, and let N be any number ...
III. Use the formula $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ to calculate the slope of the tangent line to the graph of the function (7) $f(x)=\sqrt{3 x+1}$ at the point where $x=a$. (Hint: Use $(A-B)(A+B)=A^{2}-B^{2}$ to simplify the numerator.)
IV. Write the precise $\epsilon-\delta$ definition of the following: $\lim _{f \rightarrow g} x(f)=a$.
(4)
(4)
V. Use the definition of limit to prove that $\lim _{x \rightarrow 0} x^{1 / 3}=0$.
(4)
VI. In this coordinate system,
(6) graph the functions $x^{1 / 3}$, $x^{1 / 4}$, and $x^{1 / 5}$, indicating which curve corresponds to each function.

VII. For the functions $f(x)=x^{4}+2 x$ and $g(x)=\frac{1}{x}$, calculate the compositions $f \circ g$ and $g \circ f$. (4)
VIII. The problems on this page all refer to the function $f(x)$ (9) whose graph is shown in this coordinate system:

1. In this coordinate system, graph the function $-2 f(x)$.

2. In this coordinate system, graph the function $-2 f(x+3)$.

3. In this coordinate system, graph the function $1 / f(x)$.

IX. In the coordinate system below, sketch the graph of a function $g(x)$ satisfying the following conditions:
(5) $\quad g(0)=1, g^{\prime}(0)=-1, g$ is discontinuous at $x=1$ but is continuous at all other $x<4, g(2)=0, g^{\prime}(2)=3$, $g^{\prime}(3)=0$, and $\lim _{x \rightarrow 4^{-}} g(x)=-\infty$.

X. The first coordinate system shows the graph of a function $f(x)$. On the second coordinate system, sketch (5) the graph of its derivative $f^{\prime}(x)$.

XI. (bonus problem) Sketch the graph of $y=\frac{1}{x} \sin \left(\frac{1}{x}\right)$.
(3)
