Mathematics 1823-010
Examination I Form B
February 16, 2001

Name (please print)	
Student Number	

Discussion Section (please circle day and time):

We 2:30 We 3:30 Th 9:00 Th 10:30 Th 12:00 Th 1:30

I. Calculate the limit
$$\lim_{x\to 4} \frac{x-4}{\sqrt{x}-2}$$
.

II. Complete this statement of the Intermediate Value Theorem: Suppose that
$$f(x)$$
 is a continuous function on the domain $a \le x \le b$, and let N be any number ...

III. Use the formula
$$\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$$
 to calculate the slope of the tangent line to the graph of the function $f(x) = \sqrt{3x+1}$ at the point where $x=a$. (Hint: Use $(A-B)(A+B) = A^2-B^2$ to simplify the numerator.)

- Write the precise ϵ - δ definition of the following: $\lim_{f\to g} x(f) = a$. $\mathbf{IV}.$
- (4)

- Use the definition of limit to prove that $\lim_{x\to 0} x^{1/3} = 0$. V.
- (4)

VI. In this coordinate system, graph the functions $x^{1/3}$, (6) $x^{1/4}$, and $x^{1/5}$, indicating which curve corresponds to each function.

For the functions $f(x) = x^4 + 2x$ and $g(x) = \frac{1}{x}$, calculate the compositions $f \circ g$ and $g \circ f$. (4)

VIII. The problems on this page all refer to the function f(x) (9) whose graph is shown in this coordinate system:

1. In this coordinate system, graph the function -2f(x).

2. In this coordinate system, graph the function -2f(x+3).

3. In this coordinate system, graph the function 1/f(x).

IX. In the coordinate system below, sketch the graph of a function g(x) satisfying the following conditions:

(5) g(0) = 1, g'(0) = -1, g is discontinuous at x = 1 but is continuous at all other x < 4, g(2) = 0, g'(2) = 3, g'(3) = 0, and $\lim_{x \to 4^-} g(x) = -\infty$.

X. The first coordinate system shows the graph of a function f(x). On the second coordinate system, sketch

(5) the graph of its derivative f'(x).

XI. (bonus problem) Sketch the graph of $y = \frac{1}{x} \sin\left(\frac{1}{x}\right)$.