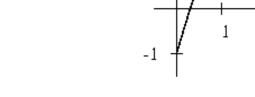

Mathematics 1823-010 Examination I Form A February 16, 2001	Name (please print)
	Student Number
	Discussion Section (please circle day and time):
	We 2:30 We 3:30 Th 9:00 Th 10:30 Th 12:00 Th 1:30

I. Write the precise ϵ - δ definition of the following: $\lim_{g \to f} x(g) = a$. (4)

II. Use the definition of limit to prove that $\lim_{x \to 0} x^{1/3} = 0.$ (4)

IV. For the functions $f(x) = \frac{1}{x}$ and $g(x) = x^3 + 3x$, calculate the compositions $f \circ g$ and $g \circ f$. (4)

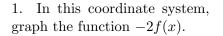

Page 2

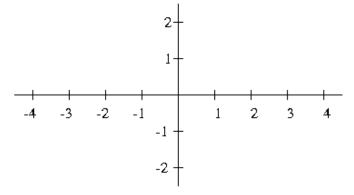
(4) Calculate the limit $\lim_{x \to 4} \frac{x-4}{\sqrt{x}-2}$.

VI. Complete this statement of the Intermediate Value Theorem: Suppose that f(x) is a continuous function (3) on the domain $a \le x \le b$, and let N be any number ...

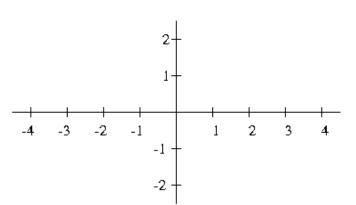
VII. Use the formula $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ to calculate the slope of the tangent line to the graph of the function $f(x) = \sqrt{3x + 1}$ at the point where x = a. (Hint: Use $(A - B)(A + B) = A^2 - B^2$ to simplify the numerator.)

VIII. The problems on this page all refer to the function f(x)(9) whose graph is shown in this coordinate system:

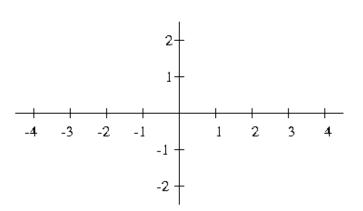

1

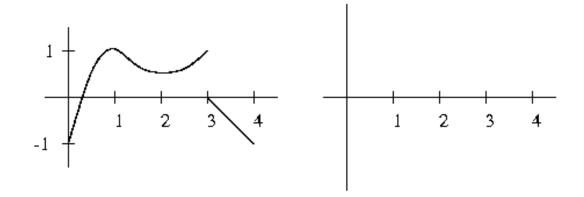

y=f(x)

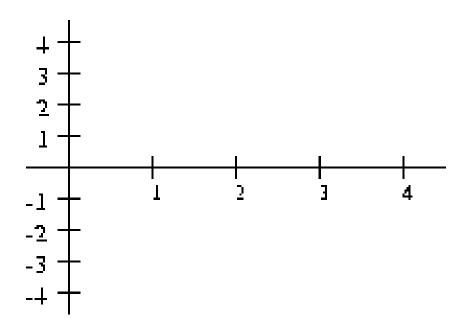
4


3

2




2. In this coordinate system, graph the function -2f(x+3).


3. In this coordinate system, graph the function 1/f(x).

- IX. The first coordinate system shows the graph of a function f(x). On the second coordinate system, sketch
- (5) the graph of its derivative f'(x).

X. In the coordinate system below, sketch the graph of a function g(x) satisfying the following conditions: (5) g(0) = 1, g'(0) = 1, g is discontinuous at x = 1 but is continuous at all other $x < 4, g(2) = 0, g'(2) = 3, g'(3) = -1, \text{ and } \lim_{x \to 4^{-}} g(x) = -\infty.$

XI. (bonus problem) Sketch the graph of $y = \frac{1}{x} \sin\left(\frac{1}{x}\right)$. (3)