Examination I

October 16, 2008
Instructions: Give brief, clear answers. If asked for a definition, give the definition that we have used in this course. In some of the problems, you will need to calculate using the formula $\Omega_{\ell} X=X-2\langle X-P, N\rangle N$.
I. (a) Use the Orthonormal Basis Theorem to express the vector $(3,1)$ as a linear combination of the vectors (6) in the orthonormal basis $\left\{\left(\frac{4}{5}, \frac{3}{5}\right),\left(-\frac{3}{5}, \frac{4}{5}\right)\right\}$.

$$
(3,1)=\left\langle(3,1),\left(\frac{4}{5}, \frac{3}{5}\right)\right\rangle\left(\frac{4}{5}, \frac{3}{5}\right)+\left\langle(3,1),\left(-\frac{3}{5}, \frac{4}{5}\right)\right\rangle\left(-\frac{3}{5}, \frac{4}{5}\right)=\frac{15}{5}\left(\frac{4}{5}, \frac{3}{5}\right)-\frac{3}{5}\left(-\frac{3}{5}, \frac{4}{5}\right)=3\left(\frac{4}{5}, \frac{3}{5}\right)-\left(-\frac{3}{5}, \frac{4}{5}\right) .
$$

(b) Find an orthonormal basis for \mathbb{R}^{2}, one of whose vectors is proportional to the vector $(-2,3)$.

A unit vector in the direction of $(-2,3)$ is $\left(\frac{-2}{\sqrt{13}}, \frac{3}{\sqrt{13}}\right)$, and an orthonomal basis containing this vector is $\left\{\left(\frac{-2}{\sqrt{13}}, \frac{3}{\sqrt{13}}\right),\left(\frac{-2}{\sqrt{13}}, \frac{3}{\sqrt{13}}\right)^{\perp}\right\}=\left\{\left(\frac{-2}{\sqrt{13}}, \frac{3}{\sqrt{13}}\right),\left(\frac{-3}{\sqrt{13}}, \frac{-2}{\sqrt{13}}\right)\right\}$.
II. The 3 Parallel Reflections Theorem says that if α, β, and γ are three lines perpendicular to a line ℓ,
(5) then there is a line δ perpendicular to ℓ so that $\Omega_{\alpha} \Omega_{\beta} \Omega_{\gamma}=\Omega_{\delta}$. Using this theorem, argue that if $F=$ $\Omega_{\alpha_{1}} \Omega_{\alpha_{2}} \cdots \Omega_{\alpha_{n}}$ is a product of n reflections in lines perpendicular to ℓ, then F is either a translation (possibly the identity) or a reflection in a line perpendicular to ℓ.

If $n \geq 2$, then by the 3 Parallel Reflections Theorem, $\Omega_{\alpha_{n-2}} \Omega_{\alpha_{n-1}} \Omega_{\alpha_{n}}=\Omega_{\delta}$ for some line δ perpendicular to ℓ. Replacing $\Omega_{\alpha_{n-2}} \Omega_{\alpha_{n-1}} \Omega_{\alpha_{n}}$ by Ω_{δ} in the product $F=\Omega_{\alpha_{1}} \Omega_{\alpha_{2}} \cdots \Omega_{\alpha_{n}}$ gives expression for F as a product of only $n-2$ reflections. Since we can repeat this process as long as there are more than 2 reflections, we will eventually finish with either $F=\Omega_{m}$, in which case F is a reflection, or $\Omega_{m} \Omega_{n}$, in which case F is a translation (possibly the identity, when $m=n$) in the direction of ℓ.
III. For a point $P \in \mathbb{R}^{2}$, define a function H_{P} from \mathbb{R}^{2} to \mathbb{R}^{2} by $H_{P} X=2 P-X$.
(a) Verify that H_{P} is injective.

Suppose $H_{P} X=H_{P} Y$. Then $2 P-X=2 P-Y$, so $-X=-Y$ and therefore $X=Y$.
(b) Verify that H_{P}^{2} is the identity function of \mathbb{R}^{2}.

For all $X, H_{P}^{2} X=H_{P}\left(H_{P} X\right)=H_{P}(2 P-X)=2 P-(2 P-X)=X$.
(c) Verify (algebraically) that $H_{P} H_{Q}=\tau_{2(P-Q)}$, where $\tau_{v} X=X+v$.

For all $X, H_{P} H_{Q} X=H_{P}(2 Q-X)=2 P-(2 Q-X)=X+2(P-Q)=\tau_{2(P-Q)} X$.
IV. Let $\ell=P+[v]=(3,2)+[(1,-2)]$.
(a) Find a unit normal N to ℓ.

A unit direction vector for ℓ is $\left(\frac{1}{\sqrt{5}}, \frac{-2}{\sqrt{5}}\right)$, so a unit normal is $N=\left(\frac{1}{\sqrt{5}}, \frac{-2}{\sqrt{5}}\right)^{\perp}=\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$.
(b) By rewriting the equation $\langle X-P, N\rangle=0$ in $x y$-coordinates, obtain an $x y$-equation for the line ℓ.

Writing $X=(x, y)$, we have
$0=\left\langle(x, y)-(3,2),\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)\right\rangle=\left\langle(x-3, y-2),\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)\right\rangle=\frac{2}{\sqrt{5}}(x-3)+\frac{1}{\sqrt{5}}(y-2)$,
which may also be written as $2(x-3)+(y-2)=0$ or $2 x+y=8$.

Page 2

V. (a) Define what it means to say that a function f is an isometry of \mathbb{R}^{2}.

It means that for all $X, Y \in \mathbb{R}^{2}, d(f X, f Y)=d(x, y)$.
(b) Prove that if f and g are isometries of \mathbb{R}^{2}, then their composition $f g$ is also an isometry.

For all $X, Y \in \mathbb{R}^{2}, d(f g X, f g Y)=d(g X, g Y)=d(X, Y)$, where the first equality uses the fact that f is an isometry, and the second uses the fact that g is an isometry.
(c) It is a fact that when $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is an isometry of \mathbb{R}^{2}, it has an inverse function $f^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ for which $f f^{-1}=i d$ and $f^{-1} f=i d$. Prove that if f is an isometry, then f^{-1} is also an isometry. Hint: Use the fact that $f\left(f^{-1} X\right)=X$.

For all $X, Y \in \mathbb{R}^{2}$, we have $d(X, Y)=d\left(f\left(f^{-1} X\right), f\left(f^{-1} Y\right)\right)=d\left(f^{-1} X, f^{-1} Y\right)$, where the last step uses the fact that f is an isometry.
VI. Let $\operatorname{TR}(\ell)$ be the group of translations in the direction of ℓ. That is, if $\ell=P+[v]$, and τ_{λ} denotes the (5) isometry of \mathbb{R}^{2} given by $\tau_{\lambda} X=X+\lambda v$, then $\operatorname{TR}(\ell)=\left\{\tau_{\lambda} \mid \lambda \in \mathbb{R}\right\}$. Prove that the function $\Phi: \mathbb{R} \rightarrow \operatorname{TR}(\ell)$ defined by $\Phi(\lambda)=\tau_{\lambda}$ satisfies the homomorphism property $\Phi\left(\lambda_{1}+\lambda_{2}\right)=\Phi\left(\lambda_{1}\right) \Phi\left(\lambda_{2}\right)$ (you do not need to show that Φ is injective or surjective).

For all X, we have

$$
\begin{gathered}
\Phi\left(\lambda_{1}+\lambda_{2}\right) X=\tau_{\lambda_{1}+\lambda_{2}} X=X+\left(\lambda_{1}+\lambda_{2}\right) v=X+\lambda_{1} v+\lambda_{2} v \\
=\tau_{\lambda_{1}}\left(X+\lambda_{2} v\right)=\tau_{\lambda_{1}} \tau_{\lambda_{2}} X=\Phi\left(\lambda_{1}\right) \Phi\left(\lambda_{2}\right) X
\end{gathered}
$$

VII. (a) Let H be a subgroup of a group G. Define a coset of H in G.

A coset of H in G is a subset of G of the form $H g=\{h g \mid h \in H\}$.
(b) Let $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,3, \ldots\}$ be the group of integers, with the operation of addition, and let $4 \mathbb{Z}$ be its subgroup $\{\ldots,-4,0,4,8, \ldots\}$. Explain briefly how it is that $4 \mathbb{Z}+2=4 \mathbb{Z}+6$.

When we add 2 to each element of $4 \mathbb{Z}$, we get

$$
4 \mathbb{Z}+2=\{\ldots,-8+2,-4+2,0+2,4+2,8+2, \ldots\}=\{\ldots,-6,-2,2,6,10, \ldots\}
$$

When we add 6 to each element of $4 \mathbb{Z}$, we get

$$
4 \mathbb{Z}+6=\{\ldots,-8+6,-4+6,0+6,4+6,8+6, \ldots\}=\{\ldots,-2,2,6,10,14, \ldots\}
$$

which equals $4 \mathbb{Z}+2$.
(c) List all the cosets of $4 \mathbb{Z}$ in \mathbb{Z}.

The cosets are

$$
\begin{aligned}
4 \mathbb{Z}+0 & =\{\ldots,-4,0,4,8, \ldots\} \\
4 \mathbb{Z}+1 & =\{\ldots,-3,1,5,9, \ldots\} \\
4 \mathbb{Z}+2 & =\{\ldots,-2,2,6,10, \ldots\} \\
4 \mathbb{Z}+3 & =\{\ldots,-1,3,7,11, \ldots\}
\end{aligned}
$$

(Once we get to $4 \mathbb{Z}+4=\{\ldots, 0,4,8,12, \ldots\}=4 \mathbb{Z}$, every coset equals one of these four, $4 \mathbb{Z}, 4 \mathbb{Z}+1,4 \mathbb{Z}+2$, or $4 \mathbb{Z}+3$. Also $4 \mathbb{Z}+(-1)=4 \mathbb{Z}+3,4 \mathbb{Z}+(-2)=4 \mathbb{Z}+2$, and so on for the cosets $4 \mathbb{Z}+n$ with $n<0$. So there are exactly these four cosets.)
VIII. Let P be a point in \mathbb{R}^{2}.
(6)
(a) Define what it means to say that an isometry R is a rotation about P.

It means that $R=\Omega_{\alpha} \Omega_{\beta}$ where α and β are two lines that contain P.
(b) Let α be a line passing through P. Let α_{0} be the line through the origin 0 parallel to α, and let τ_{P} be the translation defined by $\tau_{P} X=X+P$. Verify by calculation that $\Omega_{\alpha}=\tau_{P} \Omega_{\alpha_{0}} \tau_{-P}$. Hint: Since α_{0} passes through the origin, we have $\Omega_{\alpha_{0}} X=X-2\langle X, N\rangle N$, where N is a unit normal to α_{0} and α.

$$
\begin{aligned}
& \tau_{P} \Omega_{\alpha_{0}} \tau_{-P} X=\tau_{P} \Omega_{\alpha_{0}}(X-P)=\tau_{P}(X-P-2\langle X-P-0, N\rangle N) \\
& =X-P-2\langle X-P-0, N\rangle N+P=X-2\langle X-P, N\rangle N=\Omega_{\alpha} X
\end{aligned}
$$

IX. Use direct computation with the formula for $\Omega_{\alpha} X$ to show that if α_{0} is a line through the origin, with unit
(6) normal vector N, then $\Omega_{\alpha_{0}}(X+Y)=\Omega_{\alpha_{0}}(X)+\Omega_{\alpha_{0}}(Y)$ for all X and Y in \mathbb{R}^{2}.

Taking $P=0$ as our point on α_{0}, we have $\Omega_{\alpha_{0}} X=X-2\langle X, N\rangle N$, so

$$
\begin{gathered}
\Omega_{\alpha_{0}}(X+Y)=X+Y-2\langle X+Y, N\rangle N \\
=X+\langle X, N\rangle N+Y+\langle Y, N\rangle N=\Omega_{\alpha_{0}}(X)+\Omega_{\alpha_{0}}(Y) .
\end{gathered}
$$

X. (a) Define what it means to say that an isometry J of \mathbb{R}^{2} is a glide-reflection.
(5)

A glide-reflection is a reflection followed by a translation along its fixed line. (Alternatively, one can define it to be an isometry of the form $\tau_{v} \Omega_{\ell}$, where τ_{v} is a translation in the direction of ℓ.)
(b) Show that the composition of two glide reflections along the same line ℓ is a translation in the direction of ℓ (you may use the fact that Ω_{ℓ} commutes with any translation in the direction of ℓ).

Let $\tau_{v} \Omega_{\ell}$ and $\tau_{w} \Omega_{\ell}$ be two glide reflections along ℓ. Then $\tau_{v} \Omega_{\ell} \tau_{w} \Omega_{\ell}=\tau_{v} \tau_{w} \Omega_{\ell} \Omega_{\ell}=\tau_{v+w}$. Since v and w are both vectors in the direction of ℓ, so is $v+w$, so τ_{v+w} is a translation in the direction of ℓ.
XI. (Work on this one only if you are not short on time.) The
(6) figure to the right shows two perpendicular lines α and β that meet at the point P, and unit normal vectors N and N^{\perp} to α and β. Calculate that $\Omega_{\alpha} \Omega_{\beta} X=2 P-X$ for all $X \in \mathbb{R}^{2}$.

Page 4
We have for all X that

$$
\begin{gathered}
\Omega_{\alpha} \Omega_{\beta} X=\Omega_{\alpha}\left(X-2\left\langle X-P, N^{\perp}\right\rangle N^{\perp}\right) \\
=X-2\left\langle X-P, N^{\perp}\right\rangle N^{\perp}-2\left\langle X-2\left\langle X-P, N^{\perp}\right\rangle N^{\perp}-P, N\right\rangle N \\
=X-2\left\langle X-P, N^{\perp}\right\rangle N^{\perp}-2\langle X-P, N\rangle N-2\left(\left\langle-2\left\langle X-P, N^{\perp}\right\rangle N^{\perp}, N\right\rangle N\right. \\
=X-2\left\langle X-P, N^{\perp}\right\rangle N^{\perp}-2\langle X-P, N\rangle N+4\left\langle X-P, N^{\perp}\right\rangle\left\langle N^{\perp}, N\right\rangle N \\
=X-2\left\langle X-P, N^{\perp}\right\rangle N^{\perp}-2\langle X-P, N\rangle N=X-2(X-P)=2 P-X
\end{gathered}
$$

