
Mathematics 4513-001

Examination I

October 16, 2008

Name (please print)

Instructions: Give brief, clear answers. If asked for a definition, give the definition that we have used in this
course. In some of the problems, you will need to calculate using the formula ΩℓX = X − 2〈X − P,N〉N .

I.
(6)

(a) Use the Orthonormal Basis Theorem to express the vector (3, 1) as a linear combination of the vectors
in the orthonormal basis {(4

5 , 3
5), (−3

5 , 4
5 )}.

(3, 1) = 〈(3, 1), (4
5 , 3

5)〉(4
5 , 3

5) + 〈(3, 1), (−3
5 , 4

5)〉(−3
5 , 4

5) = 15
5 (4

5 , 3
5 ) − 3

5(−3
5 , 4

5) = 3(4
5 , 3

5) − (−3
5 , 4

5).

(b) Find an orthonormal basis for R
2, one of whose vectors is proportional to the vector (−2, 3).

A unit vector in the direction of (−2, 3) is ( −2√
13

, 3√
13

), and an orthonomal basis containing this vector is

{( −2√
13

, 3√
13

), ( −2√
13

, 3√
13

)⊥} = {( −2√
13

, 3√
13

), ( −3√
13

, −2√
13

)}.

II.
(5)

The 3 Parallel Reflections Theorem says that if α, β, and γ are three lines perpendicular to a line ℓ,
then there is a line δ perpendicular to ℓ so that ΩαΩβΩγ = Ωδ. Using this theorem, argue that if F =
Ωα1

Ωα2
· · ·Ωαn

is a product of n reflections in lines perpendicular to ℓ, then F is either a translation
(possibly the identity) or a reflection in a line perpendicular to ℓ.

If n ≥ 2, then by the 3 Parallel Reflections Theorem, Ωαn−2
Ωαn−1

Ωαn
= Ωδ for some line δ perpendic-

ular to ℓ. Replacing Ωαn−2
Ωαn−1

Ωαn
by Ωδ in the product F = Ωα1

Ωα2
· · ·Ωαn

gives expression for F

as a product of only n− 2 reflections. Since we can repeat this process as long as there are more than
2 reflections, we will eventually finish with either F = Ωm, in which case F is a reflection, or ΩmΩn,
in which case F is a translation (possibly the identity, when m = n) in the direction of ℓ.

III.
(6)

For a point P ∈ R
2, define a function HP from R

2 to R
2 by HP X = 2P − X.

(a) Verify that HP is injective.

Suppose HP X = HP Y . Then 2P − X = 2P − Y , so −X = −Y and therefore X = Y .

(b) Verify that H2
P is the identity function of R

2.

For all X, H2
P X = HP (HP X) = HP (2P − X) = 2P − (2P − X) = X.

(c) Verify (algebraically) that HP HQ = τ2(P−Q), where τvX = X + v.

For all X, HP HQX = HP (2Q − X) = 2P − (2Q − X) = X + 2(P − Q) = τ2(P−Q)X.

IV.
(6)

Let ℓ = P + [v] = (3, 2) + [(1,−2)].

(a) Find a unit normal N to ℓ.

A unit direction vector for ℓ is ( 1√
5
, −2√

5
), so a unit normal is N = ( 1√

5
, −2√

5
)⊥ = ( 2√

5
, 1√

5
).

(b) By rewriting the equation 〈X − P,N〉 = 0 in xy-coordinates, obtain an xy-equation for the line ℓ.

Writing X = (x, y), we have
0 = 〈(x, y) − (3, 2), ( 2√

5
, 1√

5
)〉 = 〈(x − 3, y − 2), ( 2√

5
, 1√

5
)〉 = 2√

5
(x − 3) + 1√

5
(y − 2),

which may also be written as 2(x − 3) + (y − 2) = 0 or 2x + y = 8.
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V.
(6)

(a) Define what it means to say that a function f is an isometry of R
2.

It means that for all X,Y ∈ R
2, d(fX, fY ) = d(x, y).

(b) Prove that if f and g are isometries of R
2, then their composition fg is also an isometry.

For all X,Y ∈ R
2, d(fgX, fgY ) = d(gX, gY ) = d(X,Y ), where the first equality uses the fact that f is

an isometry, and the second uses the fact that g is an isometry.

(c) It is a fact that when f : R
2 → R

2 is an isometry of R
2, it has an inverse function f−1 : R

2 → R
2 for which

ff−1 = id and f−1f = id. Prove that if f is an isometry, then f−1 is also an isometry. Hint: Use the fact
that f(f−1X) = X.

For all X,Y ∈ R
2, we have d(X,Y ) = d(f(f−1X), f(f−1Y )) = d(f−1X, f−1Y ), where the last step uses

the fact that f is an isometry.

VI.
(5)

Let TR(ℓ) be the group of translations in the direction of ℓ. That is, if ℓ = P + [v], and τλ denotes the
isometry of R

2 given by τλX = X +λv, then TR(ℓ) = {τλ | λ ∈ R}. Prove that the function Φ: R → TR(ℓ)
defined by Φ(λ) = τλ satisfies the homomorphism property Φ(λ1 + λ2) = Φ(λ1)Φ(λ2) (you do not need to
show that Φ is injective or surjective).

For all X, we have

Φ(λ1 + λ2)X = τλ1+λ2
X = X + (λ1 + λ2)v = X + λ1v + λ2v

= τλ1
(X + λ2v) = τλ1

τλ2
X = Φ(λ1)Φ(λ2)X

VII.
(6)

(a) Let H be a subgroup of a group G. Define a coset of H in G.

A coset of H in G is a subset of G of the form Hg = {hg | h ∈ H}.

(b) Let Z = {. . . ,−2,−1, 0, 1, 2, 3, . . .} be the group of integers, with the operation of addition, and let 4Z be its
subgroup {. . . ,−4, 0, 4, 8, . . .}. Explain briefly how it is that 4Z + 2 = 4Z + 6.

When we add 2 to each element of 4Z, we get

4Z + 2 = {. . . ,−8 + 2,−4 + 2, 0 + 2, 4 + 2, 8 + 2, . . .} = {. . . ,−6,−2, 2, 6, 10, . . .} .

When we add 6 to each element of 4Z, we get

4Z + 6 = {. . . ,−8 + 6,−4 + 6, 0 + 6, 4 + 6, 8 + 6, . . .} = {. . . ,−2, 2, 6, 10, 14, . . .} .

which equals 4Z + 2.

(c) List all the cosets of 4Z in Z.

The cosets are

4Z + 0 = {. . . ,−4, 0, 4, 8, . . .}

4Z + 1 = {. . . ,−3, 1, 5, 9, . . .}

4Z + 2 = {. . . ,−2, 2, 6, 10, . . .}

4Z + 3 = {. . . ,−1, 3, 7, 11, . . .}

(Once we get to 4Z + 4 = {. . . , 0, 4, 8, 12, . . .} = 4Z, every coset equals one of these four, 4Z, 4Z + 1, 4Z + 2,
or 4Z + 3. Also 4Z + (−1) = 4Z + 3, 4Z + (−2) = 4Z + 2, and so on for the cosets 4Z + n with n < 0. So
there are exactly these four cosets.)
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VIII.
(6)

Let P be a point in R
2.

(a) Define what it means to say that an isometry R is a rotation about P .

It means that R = ΩαΩβ where α and β are two lines that contain P .

(b) Let α be a line passing through P . Let α0 be the line through the origin 0 parallel to α, and let τP be the
translation defined by τP X = X + P . Verify by calculation that Ωα = τP Ωα0

τ−P . Hint: Since α0 passes
through the origin, we have Ωα0

X = X − 2〈X,N〉N , where N is a unit normal to α0 and α.

τP Ωα0
τ−P X = τP Ωα0

(X − P ) = τP (X − P − 2〈X − P − 0,N〉N)

= X − P − 2〈X − P − 0,N〉N + P = X − 2〈X − P,N〉N = ΩαX

IX.
(6)

Use direct computation with the formula for ΩαX to show that if α0 is a line through the origin, with unit
normal vector N , then Ωα0

(X + Y ) = Ωα0
(X) + Ωα0

(Y ) for all X and Y in R
2.

Taking P = 0 as our point on α0, we have Ωα0
X = X − 2〈X,N〉N , so

Ωα0
(X + Y ) = X + Y − 2〈X + Y,N〉N

= X + 〈X,N〉N + Y + 〈Y,N〉N = Ωα0
(X) + Ωα0

(Y ) .

X.
(5)

(a) Define what it means to say that an isometry J of R
2 is a glide-reflection.

A glide-reflection is a reflection followed by a translation along its fixed line. (Alternatively, one can
define it to be an isometry of the form τvΩℓ, where τv is a translation in the direction of ℓ.)

(b) Show that the composition of two glide reflections along the same line ℓ is a translation in the direction of
ℓ (you may use the fact that Ωℓ commutes with any translation in the direction of ℓ).

Let τvΩℓ and τwΩℓ be two glide reflections along ℓ. Then τvΩℓτwΩℓ = τvτwΩℓΩℓ = τv+w. Since v and w

are both vectors in the direction of ℓ, so is v + w, so τv+w is a translation in the direction of ℓ.

P

α

β

N

N

XI.
(6)

(Work on this one only if you are not short on time.) The
figure to the right shows two perpendicular lines α and β

that meet at the point P , and unit normal vectors N and
N⊥ to α and β. Calculate that ΩαΩβX = 2P − X for all
X ∈ R

2.
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We have for all X that

ΩαΩβX = Ωα(X − 2〈X − P,N⊥〉N⊥)

= X − 2〈X − P,N⊥〉N⊥ − 2〈X − 2〈X − P,N⊥〉N⊥ − P,N〉N

= X − 2〈X − P,N⊥〉N⊥ − 2〈X − P,N〉N − 2(〈−2〈X − P,N⊥〉N⊥,N〉N

= X − 2〈X − P,N⊥〉N⊥ − 2〈X − P,N〉N + 4〈X − P,N⊥〉〈N⊥,N〉N

= X − 2〈X − P,N⊥〉N⊥ − 2〈X − P,N〉N = X − 2(X − P ) = 2P − X


