Examination I

October 16, 2008

Instructions: Give brief, clear answers. If asked for a definition, give the definition that we have used in this course. In some of the problems, you will need to calculate using the formula $\Omega_{\ell}X = X - 2\langle X - P, N \rangle N$.

- I. (a) Use the Orthonormal Basis Theorem to express the vector (3,1) as a linear combination of the vectors (6) in the orthonormal basis $\{(\frac{4}{5}, \frac{3}{5}), (-\frac{3}{5}, \frac{4}{5})\}$.
- (b) Find an orthonormal basis for \mathbb{R}^2 , one of whose vectors is proportional to the vector (-2,3).
- II. The 3 Parallel Reflections Theorem says that if α , β , and γ are three lines perpendicular to a line ℓ , then there is a line δ perpendicular to ℓ so that $\Omega_{\alpha}\Omega_{\beta}\Omega_{\gamma} = \Omega_{\delta}$. Using this theorem, argue that if $F = \Omega_{\alpha_1}\Omega_{\alpha_2}\cdots\Omega_{\alpha_n}$ is a product of n reflections in lines perpendicular to ℓ , then F is either a translation (possibly the identity) or a reflection in a line perpendicular to ℓ .
- III. For a point $P \in \mathbb{R}^2$, define a function H_P from \mathbb{R}^2 to \mathbb{R}^2 by $H_P X = 2P X$.
- (a) Verify that H_P is injective.
- (b) Verify that H_P^2 is the identity function of \mathbb{R}^2 .
- (c) Verify (algebraically) that $H_P H_Q = \tau_{2(P-Q)}$, where $\tau_v X = X + v$.
- IV. Let $\ell = P + [v] = (3, 2) + [(1, -2)].$
- (6)
 - (a) Find a unit normal N to ℓ .
 - (b) By rewriting the equation $\langle X P, N \rangle = 0$ in xy-coordinates, obtain an xy-equation for the line ℓ .
- **V**. (a) Define what it means to say that a function f is an *isometry* of \mathbb{R}^2 .
- (6) (b) Prove that if f and g are isometries of \mathbb{R}^2 , then their composition fg is also an isometry.
- (c) It is a fact that when $f: \mathbb{R}^2 \to \mathbb{R}^2$ is an isometry of \mathbb{R}^2 , it has an inverse function $f^{-1}: \mathbb{R}^2 \to \mathbb{R}^2$ for which $ff^{-1} = id$ and $f^{-1}f = id$. Prove that if f is an isometry, then f^{-1} is also an isometry. Hint: Use the fact that $f(f^{-1}X) = X$.
- VI. Let $TR(\ell)$ be the group of translations in the direction of ℓ . That is, if $\ell = P + [v]$, and τ_{λ} denotes the isometry of \mathbb{R}^2 given by $\tau_{\lambda}X = X + \lambda v$, then $TR(\ell) = \{\tau_{\lambda} \mid \lambda \in \mathbb{R}\}$. Prove that the function $\Phi \colon \mathbb{R} \to TR(\ell)$ defined by $\Phi(\lambda) = \tau_{\lambda}$ satisfies the homomorphism property $\Phi(\lambda_1 + \lambda_2) = \Phi(\lambda_1)\Phi(\lambda_2)$ (you do *not* need to show that Φ is injective or surjective).
- **VII**. (a) Let H be a subgroup of a group G. Define a *coset* of H in G.
- (6) (b) Let $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, 3, \ldots\}$ be the group of integers, with the operation of addition, and let $4\mathbb{Z}$ be its subgroup $\{\ldots, -4, 0, 4, 8, \ldots\}$. Explain briefly how it is that $4\mathbb{Z} + 2 = 4\mathbb{Z} + 6$.
 - (c) List all the cosets of $4\mathbb{Z}$ in \mathbb{Z} .

VIII. Let P be a point in \mathbb{R}^2 .

(6)

- (a) Define what it means to say that an isometry R is a rotation about P.
- (b) Let α be a line passing through P. Let α_0 be the line through the origin 0 parallel to α , and let τ_P be the translation defined by $\tau_P X = X + P$. Verify by calculation that $\Omega_{\alpha} = \tau_P \Omega_{\alpha_0} \tau_{-P}$. Hint: Since α_0 passes through the origin, we have $\Omega_{\alpha_0} X = X 2\langle X, N \rangle N$, where N is a unit normal to α_0 and α .
- IX. Use direct computation with the formula for $\Omega_{\alpha}X$ to show that if α_0 is a line through the origin, with unit (6) normal vector N, then $\Omega_{\alpha_0}(X+Y) = \Omega_{\alpha_0}(X) + \Omega_{\alpha_0}(Y)$ for all X and Y in \mathbb{R}^2 .
- **X**. (a) Define what it means to say that an isometry J of \mathbb{R}^2 is a glide-reflection.

(5)

- (b) Show that the composition of two glide reflections along the same line ℓ is a translation in the direction of ℓ (you may use the fact that Ω_{ℓ} commutes with any translation in the direction of ℓ).
- XI. (Work on this one only if you are not short on time.) The figure to the right shows two perpendicular lines α and β that meet at the point P, and unit normal vectors N and N^{\perp} to α and β . Calculate that $\Omega_{\alpha}\Omega_{\beta}X = 2P X$ for all $X \in \mathbb{R}^2$.

