October 16, 2008

Instructions: Give brief, clear answers. If asked for a definition, give the definition that we have used in this course. In some of the problems, you will need to calculate using the formula $\Omega_{\ell} X=X-2\langle X-P, N\rangle N$.
I. (a) Use the Orthonormal Basis Theorem to express the vector $(3,1)$ as a linear combination of the vectors
(6) in the orthonormal basis $\left\{\left(\frac{4}{5}, \frac{3}{5}\right),\left(-\frac{3}{5}, \frac{4}{5}\right)\right\}$.
(b) Find an orthonormal basis for \mathbb{R}^{2}, one of whose vectors is proportional to the vector $(-2,3)$.
II. The 3 Parallel Reflections Theorem says that if α, β, and γ are three lines perpendicular to a line ℓ,
(5) then there is a line δ perpendicular to ℓ so that $\Omega_{\alpha} \Omega_{\beta} \Omega_{\gamma}=\Omega_{\delta}$. Using this theorem, argue that if $F=$ $\Omega_{\alpha_{1}} \Omega_{\alpha_{2}} \cdots \Omega_{\alpha_{n}}$ is a product of n reflections in lines perpendicular to ℓ, then F is either a translation (possibly the identity) or a reflection in a line perpendicular to ℓ.
III. For a point $P \in \mathbb{R}^{2}$, define a function H_{P} from \mathbb{R}^{2} to \mathbb{R}^{2} by $H_{P} X=2 P-X$.
(6)
(a) Verify that H_{P} is injective.
(b) Verify that H_{P}^{2} is the identity function of \mathbb{R}^{2}.
(c) Verify (algebraically) that $H_{P} H_{Q}=\tau_{2(P-Q)}$, where $\tau_{v} X=X+v$.
IV. \quad Let $\ell=P+[v]=(3,2)+[(1,-2)]$.
(6)
(a) Find a unit normal N to ℓ.
(b) By rewriting the equation $\langle X-P, N\rangle=0$ in $x y$-coordinates, obtain an $x y$-equation for the line ℓ.
V. (a) Define what it means to say that a function f is an isometry of \mathbb{R}^{2}.
(b) Prove that if f and g are isometries of \mathbb{R}^{2}, then their composition $f g$ is also an isometry.
(c) It is a fact that when $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is an isometry of \mathbb{R}^{2}, it has an inverse function $f^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ for which $f f^{-1}=i d$ and $f^{-1} f=i d$. Prove that if f is an isometry, then f^{-1} is also an isometry. Hint: Use the fact that $f\left(f^{-1} X\right)=X$.
VI. Let $\operatorname{TR}(\ell)$ be the group of translations in the direction of ℓ. That is, if $\ell=P+[v]$, and τ_{λ} denotes the
(5) isometry of \mathbb{R}^{2} given by $\tau_{\lambda} X=X+\lambda v$, then $\operatorname{TR}(\ell)=\left\{\tau_{\lambda} \mid \lambda \in \mathbb{R}\right\}$. Prove that the function $\Phi: \mathbb{R} \rightarrow \operatorname{TR}(\ell)$ defined by $\Phi(\lambda)=\tau_{\lambda}$ satisfies the homomorphism property $\Phi\left(\lambda_{1}+\lambda_{2}\right)=\Phi\left(\lambda_{1}\right) \Phi\left(\lambda_{2}\right)$ (you do not need to show that Φ is injective or surjective).
VII. (a) Let H be a subgroup of a group G. Define a coset of H in G.
(6)
(b) Let $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,3, \ldots\}$ be the group of integers, with the operation of addition, and let $4 \mathbb{Z}$ be its subgroup $\{\ldots,-4,0,4,8, \ldots\}$. Explain briefly how it is that $4 \mathbb{Z}+2=4 \mathbb{Z}+6$.
(c) List all the cosets of $4 \mathbb{Z}$ in \mathbb{Z}.
VIII. Let P be a point in \mathbb{R}^{2}.
(6)
(a) Define what it means to say that an isometry R is a rotation about P.
(b) Let α be a line passing through P. Let α_{0} be the line through the origin 0 parallel to α, and let τ_{P} be the translation defined by $\tau_{P} X=X+P$. Verify by calculation that $\Omega_{\alpha}=\tau_{P} \Omega_{\alpha_{0}} \tau_{-P}$. Hint: Since α_{0} passes through the origin, we have $\Omega_{\alpha_{0}} X=X-2\langle X, N\rangle N$, where N is a unit normal to α_{0} and α.
IX. Use direct computation with the formula for $\Omega_{\alpha} X$ to show that if α_{0} is a line through the origin, with unit (6) normal vector N, then $\Omega_{\alpha_{0}}(X+Y)=\Omega_{\alpha_{0}}(X)+\Omega_{\alpha_{0}}(Y)$ for all X and Y in \mathbb{R}^{2}.
X. (a) Define what it means to say that an isometry J of \mathbb{R}^{2} is a glide-reflection.
(b) Show that the composition of two glide reflections along the same line ℓ is a translation in the direction of ℓ (you may use the fact that Ω_{ℓ} commutes with any translation in the direction of ℓ).
XI. (Work on this one only if you are not short on time.) The
(6) figure to the right shows two perpendicular lines α and β that meet at the point P, and unit normal vectors N and N^{\perp} to α and β. Calculate that $\Omega_{\alpha} \Omega_{\beta} X=2 P-X$ for all $X \in \mathbb{R}^{2}$.

