Math 1823 homework

Instructions: Work the assigned problems. Book problems shown in **boldface** should be written up formally and turned in no later than the due date.

1. (due 8/31) Section 1.3 # 1, 2, 3, 6, 7, 9, 10, 11-16, 17-21, 22-24, 28, 37-40, 45-50, 52-55, 57-59, 61-64

2. (due 9/7) Let \(f(x) = x^3 \). Calculate the slopes of the tangent lines to the graph of \(y = x^3 \) as follows.

 (a) Let \(m_{\text{sec}} \) be the function of \(h \) that is the slope of the secant line between \((x_0, x_0^3) \) and \((x_0 + h, (x_0 + h)^3) \). Calculate \(m_{\text{sec}} \), obtaining the expression

 \[
 m_{\text{sec}} = (3x_0^2 + 3hx_0 + h^2) \frac{h}{h}.
 \]

 (b) In the \(h-y \) plane (horizontal coordinate \(h \) and vertical coordinate \(y \)), carefully graph the equation \(y = m_{\text{sec}} \) (completing the square to obtain \(h^2 + 3x_0h + 3x_0^2 = (h + \frac{3x_0}{2})^2 + \frac{3x_0^2}{4} \) might be a useful preliminary step). The graph will be a parabola, except that the point where the parabola meets the \(y \)-axis is missing.

 (c) If your graph is correct, the \(y \)-coordinate of the missing point is \(3x_0^2 \). Explain, as clearly as you can, why that number is the slope of the tangent line to \(y = x^3 \) at the point \((x_0, x_0^3) \). Clarity can be enhanced by using pictures of secant lines for some different values of \(h \).

3. (due 9/7) Let \(f(x) = x^3 \). Calculate the slopes of the tangent lines to the graph of \(y = x^3 \) as follows.

 (a) Let \(m_{\text{sec}} \) be the function of \(x \) that is the slope of the secant line between \((x_0, x_0^3) \) and \((x, x^3) \). Calculate \(m_{\text{sec}} \), obtaining the expression

 \[
 m_{\text{sec}} = (x^2 + xx_0 + x_0^2) \frac{x - x_0}{x - x_0}.
 \]

 (b) In the \(x-y \) plane, carefully graph the equation \(y = m_{\text{sec}} \) (completing the square to obtain \(x^2 + xx_0 + x_0^2 = (x + \frac{xx_0}{2})^2 + \frac{3x_0^2}{4} \) might be a useful preliminary step). The graph will be a parabola, except that the point where the parabola meets the line \(x = x_0 \) is missing.

 (c) If your graph is correct, the \(y \)-coordinate of the missing point is \(3x_0^2 \). Make sure you can explain clearly why that number is the slope of the tangent line to \(y = x^3 \) at the point \((x_0, x_0^3) \).

4. 2.2 # 1-10.

5. (due 9/7) 2.3 # 17, 19, 20, 21, 22, 24, 26, 28, 35, 36, 37, 38, 55-57.

6. (due 9/14) 2.4 # 3-6, 13, 15, 16, 20, 22-25, 26, 32, 38, 39.