19. Let \(\pi: E \to B \) be a continuous map. A **local cross-section** at \(b \) is a map \(s: U \to E \), where \(U \) is an open neighborhood of \(b \), such that \(\pi \circ s \) is the identity on \(U \), and one says that \(\pi \) has **local cross sections** if it has a local cross section at each point of \(B \). Let \(\pi: \mathcal{T}_S \to \mathbb{R}^m_{>0} \) send \(h \) to \((L_{\alpha_1}(h), \ldots, L_{\alpha_m}(h))\) as discussed in class. Prove that \(\pi \) has local cross-sections. Remark: the local product structure \(h: U \times \mathbb{R}^m \to \pi^{-1}(U) \) of \(\mathcal{T}_S \) is then defined by \(h(u, y) = y \cdot s(u) \).

20. Let \(A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \), a linear transformation of the plane \(\mathbb{R}^2 \). Find its eigenvalues \(\lambda \) and \(1/\lambda \), where \(\lambda > 1 \), and find a pair of eigenvectors \(\{v_1, v_2\} \), for which \(v_1 \) has eigenvalue \(\lambda \) and \(v_2 \) has eigenvalue \(1/\lambda \). Let \(e_1, e_2 \) be the standard basis, and graph the integer lattice \(\mathbb{Z}e_1 \times \mathbb{Z}e_2 \) in the \(v_1, v_2 \) basis.

21. Let \(f \) be the linear transformation of \(\mathbb{R}^2 \) which is multiplication by the matrix \(A \) in the previous problem, let \(\mu_s \) and \(\mu_u \) be the measures associated to the stable and unstable foliations associated to \(A \). Explain how the push-forward \(f \mu_u \) equals \((1/\lambda) \mu_u \).

22. Recall that \(\text{diff}(S) \) is the connected component of the identity in \(\text{Diff}(S) \). Observe that if \(g \in \text{Diff}_+(S) \) and \(h \) is a Riemannian metric on \(S \), then the push forward \(gh \) equals \(h \) if and only if \(g \) is an isometry of \(h \).

1. Our first definition of \(\mathcal{T}_S \) was the equivalence classes of hyperbolic metrics on \(S \), where \(h_1 \sim h_2 \) when there exists \(j \in \text{diff}(S) \) such that \(j h_1 = h_2 \). For this definition, the action of \(\mathcal{H}_+(S) \) on \(\mathcal{T}_S \) is \(\langle g \rangle [h] = [gh] \). Using this definition, prove that \(\langle g \rangle [h] = [h] \) if and only if \(g \) is isotopic to an isometry of \(S \) when \(S \) has the metric \(h \).

2. Our second definition of \(\mathcal{T}_S \) was the equivalence classes of marked hyperbolic structures on \(S \), that is, pairs \((S_1, g_1)\) with \(S_1 \) a surface with a hyperbolic metric \(h_1 \) and \(g_1: S_1 \to S \) is a diffeomorphism, with \((S_1, g_1) \sim (S_2, g_2)\) when \(g_2^{-1}g_1 \) is isotopic to an isometry. For this definition, the action of \(\mathcal{H}_+(S) \) on \(\mathcal{T}_S \) is \(\langle g \rangle [(S_1, g_1)] = [(S_1, gg_1)] \). Using this definition, prove that \(\langle g \rangle [(S_1, g_1)] = [(S_1, g_1)] \) if and only if \(g \) is isotopic to an isometry of \(S \), where \(S \) has the push-forward metric \(g_1 h_1 \).