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Name (please print)

I.
(6)

For the series
∞∑

n=1

an:

1. Define the nth partial sum sn.

2. Define what it means to say that the series converges.

3. Suppose that sn = n2. Calculate an.

II.
(6)

Verify that the series
∞∑

n=1

1
n2 + 1

converges, using the following two methods:

1. By using the Limit Comparison Test to check that it has the same convergence behavior as
∞∑

n=1

1
n2

.

2. By using the Comparison Test with a direct comparison to the terms of
∞∑

n=1

1
n2

.
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III.
(6)

For each of the following functions, write the Maclaurin series both as a summation and as an infinite list

of terms. For example: ln(1 + x) =
∞∑

n=1

(−1)n−1

n
xn = x− x2

2
+

x3

3
− x4

4
+ · · ·

1. ex

2. cos(x)

IV.
(16)

For each of the following power series, determine the convergence behavior. That is, find the interval of
convergence, and for the x in the interval of convergence, tell where the convergence is conditional and
where it is absolute. Follow any special instructions given.

1.
∞∑

n=2

xn

(ln(n))n
(use the Root Test).

2.
∞∑

n=2

(ln(n))nxn

3.
∞∑

n=1

(x− 1)n

√
n

(use the Ratio Test).
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V.
(6)

The Alternating Series Test does not apply to any of the following series. For each of the series, tell why
the Alternating Series Test does not apply.

1.
∞∑

n=1

(−1)n(n + 1)2

n2

2.
∞∑

n=1

(−1)n 1
(−2)n

3.
∞∑

n=1

(−1)nbn, where bn =
1
n

if n is even and bn =
1
n2

if n is odd.

VI.
(7)

Write the general formula for the Taylor series of f(x) at x = a. Use the formula with a = 1 to calculate

the Taylor series of
1
x

at a = 1.
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VII.
(5)

Suppose that a function f(x) can be written as c0 + c1x + c2x
2 + c3x

3 + · · · for all x in some interval that
contains 0.

1. Show that c0 = f(0).

2. Write a series, involving these cn, for f ′(x), and use it to find c1.

3. Write a series, involving these cn, for f ′′(x), and use it to find c2.

4. Write a series, involving these cn, for f (3)(x), and use it to find c3.

5. Write a general expression for cn.

VIII.
(4)

Show that if 0 < bn <
1
n

for all n, then
∞∑

n=1

bn

n
converges.


