Mathematics 2433-001
Examination II Form A
October 22, 1999

Name (please print)
Student Number
I. For each of the following power series, use one of the following tests to determine convergence or divergence:
(15) Integral Test, Comparison Test, Alternating Series Test, Ratio Test.

1. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
2. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$
3. $\sum_{n=1}^{\infty} \frac{\sin ^{2}(n)}{n^{2}}$
II. For each of the following, circle the letter of the correct response.
(15)
4. For which values of p does the series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converge?
(a) all values
(b) $p<0$
(c) $p \leq 0$
(d) $p<1$
(e) $p \leq 1$
(f) $p>0$
(f) $p \geq 0$
(g) $p>1$
(i) $p \geq 1$
5. To show that the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+2 n+2}$ converges, one could compare its terms to the terms of which of the following series?
(a) $\sum_{n=1}^{\infty} \frac{1}{n}$
(b) $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{2}}{n^{2}}$
(d) $\sum_{n=1}^{\infty} \arctan (n+1)$
(e) $\sum_{n=1}^{\infty} \ln \left(n^{2}+2 n+2\right)$
(f) $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$
(g) $\sum_{n=1}^{\infty} \frac{1}{n^{4}+n^{3}+2}$
(h) more than one of these
(i) none of these
6. The series $\sum_{n=0}^{\infty} 2^{n} x^{2 n}$ converges for
(a) only $x=0$
(b) $-\frac{1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}}$
(c) $-\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}}$
(d) $-\frac{1}{2}<x<\frac{1}{2}$
(e) $-\frac{1}{2} \leq x \leq \frac{1}{2}$
(f) $-1<x<1$
(g) $-1 \leq x \leq 1$
(h) $-\sqrt{2}<x<\sqrt{2}$
(i) $-\sqrt{2} \leq x \leq \sqrt{2}$
(j) $-2<x<2$
(k) $-2 \leq x \leq 2$
(1) $-\infty<x<\infty$
III. A power series of the form $\sum_{n=0}^{\infty} c_{n}(x-3)^{n}$ has radius of convergence $R=5$. What can be said about its
(5) (5) convergence or divergence at different values of x ?
IV. \quad The Maclaurin series for $\sin (x)$ is $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$.
(a) Use the ratio test to verify that this series converges absolutely for all x.
(b) Differentiate this series term by term to obtain a power series for $\cos (x)$.
V. Starting with the fact that
(8) $\ln (1+x)=\int \frac{1}{1+x} d x=\int \frac{1}{1-(-x)} d x$,
expand $\frac{1}{1-(-x)}$ as a power series, and integrate to obtain a power series, plus a constant, which is equal to $\ln (1+x)$. Evaluate at $x=0$ to show that the constant equals 0 .
VI. Define absolutely convergent and conditionally convergent. Give an example of a conditionally convergent (6) series.
