Test 1 Form A
September 24, 1999
I. (12) A particle moves with position $(x, y)$ where $x=\sin (t)$ and $y=\csc ^{2}(t)$ for $\frac{\pi}{6} \leq t \leq 1$.
a. On a graph, show the path of the particle and describe the motion.
b. Write an integral whose value is the distance traveled by the particle, but do not simplify or try to evaluate the integral. (Recall that $\frac{d}{d x}(\csc (x))=-\csc (x) \cot (x)$.)
c. Suppose that the path followed by the particle is rotated around the line $y=-2$ to form a surface. Write an integral whose value is surface area of the resulting surface, but do not simplify or try to evaluate the integral.
II.(6) Find all polar coordinates for the point with $x y$-coordinates $(-1,7)$. (An inverse tangent should appear in your answer - do not replace it by a decimal approximation.)
III.(6) Making use of the chain rule $\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}$, calculate a formula for $\frac{d y}{d x}$ in terms of $\frac{d r}{d \theta}$.
IV.(10) For the equation $r=3 \sin (2 \theta)$, graph the equation in the $r \theta$-plane, and also in the $x y$-plane where $r$ and $\theta$ represent polar coordinates. Calculate the area enclosed by one loop of the polar curve. (Hint: $\sin ^{2} x=\frac{1}{2}-\frac{\cos (2 x)}{2}$.)
V.(4) For the series $\sum_{n=1}^{\infty}(-1)^{n} n^{2}$, calculate the partial sums $s_{1}, s_{2}$, and $s_{4}$.
VI. (4) Explain how you can know that the series $\sum_{n=1}^{\infty} \sin \left(\frac{\sqrt{n}}{\sqrt{n}+1}\right)$ diverges.
VII.(4) Give the exact value of the series $\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{3}{4}\right)^{n}$.
VIII.(4) Find the values of $x$ for which the following series converges: $\sum_{n=0}^{\infty}(-1)^{n}(x-2)^{n}$.
IX. (4) Bonus: Analyze the behavior of the polar curve $r=\frac{1}{\theta^{2}}$ as $\theta \longrightarrow 0^{+}$.

